Browsing by Subject "RESONANCES"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Beshore, Edward; Vokrouhlický, David; Nesvorný, David; Michel, Patrick (2018)
    Abstract The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies of individual NEOs and more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis, eccentricity, inclination, and absolute magnitude H in the range 17 < H < 25. The modeling approach improves upon the methodology originally developed by Bottke et al. (2000, Science 288, 2190–2194) in that it is, for example, based on more realistic orbit distributions and uses source-specific absolute-magnitude distributions that allow for a power-law slope that varies with H. We divide the main asteroid belt into six different entrance routes or regions (ER) to the NEO region: the ν6, 3:1J, 5:2J and 2:1J resonance complexes as well as Hungarias and Phocaeas. In addition we include the Jupiter-family comets as the primary cometary source of NEOs. We calibrate the model against NEO detections by Catalina Sky Surveys’ stations 703 and G96 during 2005–2012, and utilize the complementary nature of these two systems to quantify the systematic uncertainties associated to the resulting model. We find that the (fitted) H distributions have significant differences, although most of them show a minimum power-law slope at H ∼ 20. As a consequence of the differences between the ER-specific H distributions we find significant variations in, for example, the NEO orbit distribution, average lifetime, and the relative contribution of different ERs as a function of H. The most important ERs are the ν6 and 3:1J resonance complexes with JFCs contributing a few percent of NEOs on average. A significant contribution from the Hungaria group leads to notable changes compared to the predictions by Bottke et al. in, for example, the orbit distribution and average lifetime of NEOs. We predict that there are 962 − 56 + 52 ( 802 − 42 + 48 × 10 3 ) NEOs with H < 17.75 (H < 25) and these numbers are in agreement with the most recent estimates found in the literature (the uncertainty estimates only account for the random component). Based on our model we find that relative shares between different NEO groups (Amor, Apollo, Aten, Atira, Vatira) are (39.4,54.4,3.5,1.2,0.3)%, respectively, for the considered H range and that these ratios have a negligible dependence on H. Finally, we find an agreement between our estimate for the rate of Earth impacts by NEOs and recent estimates in the literature, but there remains a potentially significant discrepancy in the frequency of Tunguska-sized and Chelyabinsk-sized impacts.
  • Murtola, Tiina; Aalto, Atte; Malinen, Jarmo; Aalto, Daniel; Vainio, Martti (2018)
    During voiced speech, vocal folds interact with the vocal tract acoustics. The resulting glottal source-resonator coupling has been observed using mathematical and physical models as well as in in vivo phonation. We propose a computational time-domain model of the full speech apparatus that contains a feedback mechanism from the vocal tract acoustics to the vocal fold oscillations. It is based on numerical solution of ordinary and partial differential equations defined on vocal tract geometries that have been obtained by magnetic resonance imaging. The model is used to simulate rising and falling pitch glides of [alpha, i] in the fundamental frequency (f(o)) interval [145 Hz, 315 Hz]. The interval contains the first vocal tract resonance f(R1) and the first formant F-1 of [i] as well as the fractions of the first resonance f(R1)/5, f(R1)/4, and f(R1)/3 of [alpha]. The glide simulations reveal a locking pattern in the f(o) trajectory approximately at f(R1) of [i]. The resonance fractions of [alpha] produce perturbations in the pressure signal at the lips but no locking.
  • The ALICE collaboration; Acharya, S.; Brücken, E. J.; Chang, B.; Hilden, T. E.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Parkkila, J. E.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J. (2019)
    Comprehensive results on the production of unidentified charged particles, pi(+/-), K-+/-, K-s(0), K*(892)(0), p, (p) over bar, phi(1020), Lambda, (Lambda) over bar, Xi(-) , (Xi) over bar (+), Omega(-), and (Omega) over bar (+) hadrons in proton-proton (pp) collisions at root s = 7 TeV at midrapidity (vertical bar y vertical bar < 0.5) as a function of charged-particle multiplicity density are presented. In order to avoid autocorrelation biases, the actual transverse momentum (p(T)) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particleto-pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at Large Hadron Collider energies. The obtained p(T), distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions.
  • The ALICE collaboration; Acharya, S.; Adamova, D.; Kim, D. J.; Krizek, F.; Parkkila, J. E.; Rak, J.; Rytkönen, Heidi Maria; Räsänen, Sami; Saarimäki, Oskari Antti Matti; Slupecki, M.; Trzaska, W. H.; Zhou, Zhipeng (2021)
    In this paper, the first femtoscopic analysis of pion-kaon correlations at the LHC is reported. The analysis was performed on the Pb-Pb collision data at root(S)(NN) = 2.76 TeV recorded with the ALICE detector. The non-identical particle correlations probe the spatio-temporal separation between sources of different particle species as well as the average source size of the emitting system. The sizes of the pion and kaon sources increase with centrality, and pions are emitted closer to the centre of the system and/or later than kaons. This is naturally expected in a system with strong radial flow and is qualitatively reproduced by hydrodynamic models. ALICE data on pion-kaon emission asymmetry are consistent with (3+1)-dimensional viscous hydrodynamics coupled to a statistical hadronisation model, resonance propagation, and decay code THERMINATOR 2 calculation, with an additional time delay between 1 and 2 fm/c for kaons. The delay can be interpreted as evidence for a significant hadronic rescattering phase in heavy-ion collisions at the LHC. (C) 2020 The Author. Published by Elsevier B.V.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search for a new high-mass resonance decaying to a tau lepton and a neutrino is reported. The analysis uses proton-proton collision data collected by the CMS experiment at the LHC at root s= 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). The search utilizes hadronically decaying tau leptons. No excess in the event yield is observed at high transverse masses of the tau and missing transverse momentum. An interpretation of results within the sequential standard model excludes W' boson masses below 4.0 TeV at 95% confidence level. Existing limits are also improved on models in which the W' boson decays preferentially to fermions of the third generation. Heavy W' bosons with masses less than 1.7-3.9 TeV, depending on the coupling in the non-universal G(221) model, are excluded at 95% confidence level. These are the most stringent limits on this model to date. (C) 2019 The Author(s). Published by Elsevier B.V.