Browsing by Subject "RETRIEVALS"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Sporre, Moa K.; O'Connor, Ewan J.; Håkansson, Nina; Thoss, Anke; Swietlicki, Erik; Petäjä, Tuukka (2016)
    Cloud retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi-NPP satellite are evaluated using a combination of ground-based instruments providing vertical profiles of clouds. The ground-based measurements are obtained from the Atmospheric Radiation Measurement (ARM) programme mobile facility, which was deployed in Hyytiala, Finland, between February and September 2014 for the Biogenic Aerosols - Effects on Clouds and Climate (BAECC) campaign. The satellite cloud parameters cloud top height (CTH) and liquid water path (LWP) are compared with ground-based CTH obtained from a cloud mask created using lidar and radar data and LWP acquired from a multi-channel microwave radiometer. Clouds from all altitudes in the atmosphere are investigated. The clouds are diagnosed as single or multiple layer using the ground-based cloud mask. For single-layer clouds, satellites overestimated CTH by 326 (14 %) on average. When including multilayer clouds, satellites underestimated CTH by on average 169 m (5.8 %). MODIS collection 6 overestimated LWP by on average 13 g m(-2) (11 %). Interestingly, LWP for MODIS collection 5.1 is slightly overestimated by Aqua (4.56 %) but is underestimated by Terra (14.3 %). This underestimation may be attributed to a known issue with a drift in the reflectance bands of the MODIS instrument on Terra. This evaluation indicates that the satellite cloud parameters selected show reasonable agreement with their ground-based counterparts over Finland, with minimal influence from the large solar zenith angle experienced by the satellites in this high-latitude location.
  • Lukes, Petr; Rautiainen, Miina; Manninen, Terhikki; Stenberg, Pauline; Mottus, Matti (2014)
    Land surface albedo is an essential climate variable controlling the planetary radiative energy budget, yet it is still among the main uncertainties of the radiation budget in the current climate modeling. To date, albedo satellite products have not been linked to extensive forest inventory data sets due to the lack of ground reference data. Here, we used comprehensive and detailed maps of forest inventory variables to couple forest structure and MODIS albedo products for both winter and summer conditions. We investigated how the relationships between forest variables and albedo change seasonally and along latitudinal gradients in the forest biomes of Finland between 60° and 70° N. We observed an increase in forest albedo with increasing latitude in winter but not in summer. Also, relationships between forest variables and the black-sky albedo or directional–hemispherical reflectance (DHR) at different latitudes were tighter in winter than in summer, especially for forest biomass. Summer albedo was only weakly correlated with the traditional inventory variables. Our findings suggest that the relationships between forest variables and DHR depend on latitude.
  • Filioglou, Maria; Nikandrova, Anna; Niemelä, Sami; Baars, Holger; Mielonen, Tero; Leskinen, Ari; Brus, David; Romakkaniemi, Sami; Giannakaki, Elina; Komppula, Mika (2017)
    We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) satellite product; the Aire Limitee Adaptation dynamique Developpement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM) numerical weather prediction (NWP) system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar). The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are <2.8, 7.4 and 3.9 %, respectively. We also include water vapor mixing ratio intercomparisons between the radio soundings and the various instruments/model for the period of the campaigns. A good agreement is observed for all comparisons with relative errors that do not exceed 50% up to 8 km altitude in most cases. A 4-year seasonal analysis of vertical water vapor is also presented for the Kuopio site in Finland. During winter months, the air in Kuopio is dry (1.15 +/- 0.40 g kg(-1)); during summer it is wet (5.54 +/- 1.02 g kg(-1)); and at other times, the air is in an intermediate state. These are averaged values over the lowest 2 km in the atmosphere. Above that height a quick decrease in water vapor mixing ratios is observed, except during summer months where favorable atmospheric conditions enable higher mixing ratio values at higher altitudes. Lastly, the seasonal change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes during spring and summer.
  • Sofieva, Viktoria F.; Hänninen, Risto; Sofiev, Mikhail; Szelag, Monika; Lee, Hei Shing; Tamminen, Johanna; Retscher, Christian (2022)
    Satellite measurements in nadir and limb viewing geometry provide a complementary view of the atmosphere. An effective combination of the limb and nadir measurements can give new information about atmospheric composition. In this work, we present tropospheric ozone column datasets that have been created using a combination of total ozone columns from OMI (Ozone Monitoring Instrument) and TROPOMI (TROPOspheric Monitoring Instrument) with stratospheric ozone column datasets from several available limb-viewing instruments: MLS (Microwave Limb Sounder), OSIRIS (Optical Spectrograph and InfraRed Imaging System), MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), SCIAMACHY (SCanning Imaging Spectrometer for Atmospheric CHartographY), OMPS-LP (Ozone Mapping and Profiles Suite - Limb Profiler), and GOMOS (Global Ozone Monitoring by Occultation of Stars). We have developed further the methodological aspects of the assessment of tropospheric ozone using the residual method supported by simulations with the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition). It has been shown that the accurate assessment of ozone in the upper troposphere and the lower stratosphere (UTLS) is of high importance for detecting the ground-level ozone patterns. The stratospheric ozone column is derived from a combination of ozone profiles from several satellite instruments in limb-viewing geometry. We developed a method for the data homogenization, which includes the removal of biases and a posteriori estimation of random uncertainties, thus making the data from different instruments compatible with each other. The high-horizontal- and vertical-resolution dataset of ozone profiles is created via interpolation of the limb profiles from each day to a 1 degrees x 1 degrees horizonal grid. A new kriging-type interpolation method, which takes into account data uncertainties and the information about natural ozone variations from the SILAM-adjusted ozone field, has been developed. To mitigate the limited accuracy and coverage of the limb profile data in the UTLS, a smooth transition to the model data is applied below the tropopause. This allows for the estimation of the stratospheric ozone column with full coverage of the UTLS. The derived ozone profiles are in very good agreement with collocated ozonesonde measurements. The residual method was successfully applied to OMI and TROPOMI clear-sky total ozone data in combination with the stratospheric ozone column from the developed high-resolution limb profile dataset. The resulting tropospheric ozone column is in very good agreement with other satellite data. The global distributions of tropospheric ozone exhibit enhancements associated with the regions of high tropospheric ozone production. The main datasets created are (i) a monthly 1 degrees x 1 degrees global tropospheric ozone column dataset (from ground to 3 km below the tropopause) using OMI and limb instruments, (ii) a monthly 1 degrees x 1 degrees global tropospheric ozone column dataset using TROPOMI and limb instruments, and (iii) a daily 1 degrees x 1 degrees interpolated stratospheric ozone column from limb instruments. Other datasets, which are created as an intermediate step of creating the tropospheric ozone column data, are (i) a daily 1 degrees x 1 degrees clear-sky and total ozone column from OMI and TROPOMI, (ii) a daily 1 degrees x 1 degrees homogenized and interpolated dataset of ozone profiles from limb instruments, and (iii) a daily 1 degrees x 1 degrees dataset of ozone profiles from SILAM simulations with adjustment to satellite data. These datasets can be used in various studies related to variability and trends in ozone distributions in both the troposphere and the stratosphere. The datasets are processed from the beginning of OMI and TROPOMI measurements until December 2020 and are planned to be regularly extended in the future.
  • van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W. (2016)
    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our vegetation model SiBCASA, we increase data usage by assimilating two streams of satellite-derived soil moisture. We study whether the assimilation improved SiBCASA's soil moisture and its effect on the simulated carbon fluxes. By comparing to unique in situ soil moisture observations, we show that the passive microwave soil moisture product did not improve the soil moisture simulated by SiBCASA, but the active data seem promising in some aspects. The match between SiBCASA and ASCAT soil moisture is best in the summer months over low vegetation. Nevertheless, ASCAT failed to detect the major droughts occurring between 2007 and 2013. The performance of ASCAT soil moisture seems to be particularly sensitive to ponding, rather than to biomass. The effect on the simulated carbon fluxes is large, 5-10% on annual GPP and TER, tens of percent on local NEE, and 2% on area-integrated NEE, which is the same order of magnitude as the inter-annual variations. Consequently, this study shows that assimilation of satellite-derived soil moisture has potentially large impacts, while at the same time further research is needed to understand under which conditions the satellite-derived soil moisture improves the simulated soil moisture.