Browsing by Subject "REWORKING"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Coppock, Rachel L.; Lindeque, Penelope K.; Cole, Matthew; Galloway, Tamara S.; Nakki, Pinja; Birgani, Hannah; Richards, Saskiya; Queiros, Ana M. (2021)
    Microplastics are ubiquitous in the marine environment, however, the mechanisms governing their uptake by, and burial within, seabed habitats are poorly understood. In this study, microplastic burial and its impact on fauna-mediated sedimentary processes was quantified at three coastal sites, and the potential contribution of burrowing faunal communities to this process assessed via functional trait diversity analysis of field data. In addition, laboratory exposures were used to assess whether sediment-processing undertaken by the brittlestar Amphiura filiformis, a key species in the sampled area, could explain the burial of microplastic fibres. Field observations confirmed broad-scale burial of microplastics across the coastal seabed, consistent across sites and seasons, with microplastic sequestration linked to benthic-pelagic exchange pathways, driven by burrowing fauna. Brittlestars were observed to bury and line their burrow walls with microfibres during experiments, and their burial activity was also modified following exposure to nylon fibres, relative to controls. Collectively, these results indicate that biodiverse and functionally important seabed habitats act as microplastic sinks, with burrowing fauna contributing to this process via well-known benthic-pelagic pathways, the rates of which are modified by plastic exposure.
  • Näkki, Pinja; Setälä, Outi; Lehtiniemi, Maiju (2019)
    Microplastics (MPs) are ubiquitous in the marine environment. High concentrations of MPs are found from seafloor sediments, which have been proposed to act as their final sinks. Because bioturbation is an important process affecting the burial of MPs, a mesocosm experiment was established to study whether sediment infauna may also promote MP return to the sediment surface. Thin layers of frozen sediment containing an environmentally realistic concentration (500 μm and 100–300 μm) were added to depths of 2 cm and 5 cm in the experimental cylinders filled with sediment. The displacement of these MPs, made of acrylonitrile butadiene styrene (ABS), by a community of common benthic invertebrates in the northern Baltic Sea (clam Limecola balthica, polychaete Marenzelleria spp., gammarid Monoporeia affinis) was studied in a 10-week experiment. After the experiment, the MPs were extracted from each sediment layer and the animals were examined for MP ingestion. The results indicated that the transportation of MPs to the sediment surface by bioturbation was negligible. Thus, in the Baltic Sea, the seafloor may act as a sink for once sedimented MPs, reducing simultaneously the MP exposure of the macrofauna feeding on the sediment surface.