Browsing by Subject "RING-DOWN SPECTROSCOPY"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Oswald, R.; Ermel, M.; Hens, K.; Novelli, A.; Ouwersloot, H. G.; Paasonen, Pauli; Petäjä, Tuukka; Sipilä, Mikko; Keronen, Petri; Bäck, Jaana; Konigstedt, R.; Beygi, Z. Hosaynali; Fischer, H.; Bohn, B.; Kubistin, D.; Harder, H.; Martinez, M.; Williams, J.; Hoffmann, T.; Trebs, I.; Soergel, M. (2015)
  • Osterwalder, S.; Fritsche, J.; Alewell, C.; Schmutz, M.; Nilsson, M. B.; Jocher, G.; Sommar, J.; Rinne, J.; Bishop, K. (2016)
    The fate of anthropogenic emissions of mercury (Hg) to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange holds the key to a better understanding of Hg cycling from local to global scales, which has been difficult to quantify. To advance research about land-atmosphere Hg interactions, we developed a dual-inlet, single detector relaxed eddy accumulation (REA) system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM) fluxes has proven difficult due to technical challenges presented by extremely small concentration differences (typically <0.5 ngm(-3)) between updrafts and downdrafts. We present an advanced REA design that uses two inlets and two pairs of gold cartridges for continuous monitoring of GEM fluxes. This setup reduces the major uncertainty created by the sequential sampling in many previous designs. Additionally, the instrument is equipped with a GEM reference gas generator that monitors drift and recovery rates. These innovations facilitate continuous, autonomous measurement of GEM flux. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal peatland during snowmelt. The observed average emission rates were 15 and 3 n gm(-2) h(-1), respectively. We believe that this dual-inlet, single detector approach is a significant improvement of the REA system for ultra-trace gases and can help to advance our understanding of long-term land-atmosphere GEM exchange.
  • Schmidt, F. M.; Vaittinen, O.; Metsälä, M.; Lehto, M.; Forsblom, C.; Groop, P-H; Halonen, L. (2013)
  • Peltola, Jari; Vainio, Markku; Fordell, Thomas; Hieta, Tuomas; Merimaa, Mikko; Halonen, Lauri (2014)
    We report on a tunable continuous-wave mid-infrared optical parametric oscillator (OPO), which is locked to a fully stabilized near-infrared optical frequency comb using a frequency doubling scheme. The OPO is used for 40 GHz mode-hop-free, frequency-comb-locked scans in the wavelength region between 2.7 and 3.4 x03BC;m. We demonstrate the applicability of the method to high-precision cavity-ring-down spectroscopy of nitrous oxide (N2O) and water (H2O) at 2.85 x00B5;m and of methane (CH4) at 3.2 x03BC;m.
  • Henderson, Ben; Khodabakhsh, Amir; Metsälä, Markus; Ventrillard, Irène; Schmidt, Florian M.; Romanini, Daniele; Ritchie, Grant A. D.; te Lintel Hekkert, Sacco; Briot, Raphaël; Risby, Terence; Marczin, Nandor; Harren, Frans J. M.; Cristescu, Simona M. (2018)
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.
  • Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James; Ortega, John (2018)
    Here we report the measurement results of nitrous acid (HONO) and a suite of relevant parameters on the NCAR C-130 research aircraft in the southeastern US during the NOMADSS 2013 summer field study. The daytime HONO concentration ranged from low parts per trillion by volume (pptv) in the free troposphere (FT) to mostly within 5-15 pptv in the background planetary boundary layer (PBL). There was no discernible vertical HONO gradient above the lower flight altitude of 300m in the PBL, and the transport of ground surface HONO was not found to be a significant contributor to the tropospheric HONO budget. The total in situ HONO source mean (+/- 1 SD) was calculated as 53 (+/- 21) pptv h(-1) during the day. The upper-limit contribution from NOx-related reactions was 10 (+/- 5) pptv h(-1), and the contribution from photolysis of particulate nitrate (pNO(3)) was 38 (+/- 23) pptv h(-1), based on the measured pNO(3) concentrations and the median pNO(3) photolysis rate constant of 2.0 x 10 4 s(-1) determined in the laboratory using ambient aerosol samples. The photolysis of HONO contributed to less than 10% of the primary OH source. However, a recycling NOx source via pNO(3) photolysis was equivalent to similar to 2.3 x 10(-6) molm(-2) h(-1) in the air column within the PBL, a considerable supplementary NOx source in the low-NOx background area. Up to several tens of parts per trillion by volume of HONO were observed in power plant and urban plumes during the day, mostly produced in situ from precursors including NOx and pNO(3). Finally, there was no observable accumulation of HONO in the nocturnal residual layer and the nocturnal FT in the background southeastern US, with an increase in the HONO / NOx ratio of