Sort by: Order: Results:

Now showing items 1-3 of 3
  • Poire, Xavier; Labopin, Myriam; Polge, Emmanuelle; Forcade, Edouard; Ganser, Arnold; Volin, Liisa; Michallet, Mauricette; Blaise, Didier; Yakoub-Agha, Ibrahim; Maertens, Johan; Richard Espiga, Carlos; Cornelissen, Jan; Finke, Jurgen; Mohty, Mohamad; Esteve, Jordi; Nagler, Arnon (2020)
    Deletion 5q or monosomy 5 (-5/5q-) in acute myeloid leukemia (AML) is a common high-risk feature that is referred to allogeneic stem cell transplantation. However, -5/5q- is frequently associated with other high-risk cytogenetic aberrations such as complex karyotype, monosomal karyotype, monosomy 7 (-7), or 17p abnormalities (abn (17p)), the significance of which is unknown. In order to address this question, we studied adult patients with AML harboring -5/5q- having their first allogeneic transplantation between 2000 and 2015. Five hundred and one patients with -5/5q- have been analyzed. Three hundred and thirty-eight patients (67%) were in first remission and 142 (28%) had an active disease at time of allogeneic transplantation. The 2-year probabilities of overall survival and leukemia-free survival were 27% and 20%, respectively. The 2-year probability of treatment-related mortality was 20%. We identified four different cytogenetic groups according to additional abnormalities with prognostic impact: -5/5q- without complex karyotype, monosomal karyotype or abn(17p), -5/5q- within a complex karyotype, -5/5q- within a monosomal karyotype and the combination of -5/5q- with abn(17p). In multivariate analysis, factors associated with worse overall survival and leukemia-free survival across the four groups were active disease, age, monosomal karyotype, and abn(17p). The presence of -5/5q- without monosomal karyotype or abn(17p) was associated with a significantly better survival rate while -5/5q- in conjunction with monosomal karyotype or abn(17p) translated into a worse outcome. The patients harboring the combination of -5/5q- with abn(17p) showed very limited benefit from allogeneic transplantation.
  • Tobiasson, Magnus; Abdulkadir, Hani; Lennartsson, Andreas; Katayama, Shintaro; Marabita, Francesco; De Paepe, Ayla; Karimi, Mohsen; Krjutskov, Kaarel; Einarsdottir, Elisabet; Grovdal, Michael; Jansson, Monika; Ben Azenkoud, Asmaa; Corddedu, Lina; Lehmann, Soren; Ekwall, Karl; Kere, Juha; Hellstrom-Lindberg, Eva; Ungerstedt, Johanna (2017)
    Azacitidine (Aza) is first-line treatment for patients with high-risk myelodysplastic syndromes (MDS), although its precise mechanism of action is unknown. We performed the first study to globally evaluate the epigenetic effects of Aza on MDS bone marrow progenitor cells assessing gene expression (RNA seq), DNA methylation (Illumina 450k) and the histone modifications H3K18ac and H3K9me3 (ChIP seq). Aza induced a general increase in gene expression with 924 significantly upregulated genes but this increase showed no correlation with changes in DNA methylation or H3K18ac, and only a weak association with changes in H3K9me3. Interestingly, we observed activation of transcripts containing 15 endogenous retroviruses (ERVs) confirming previous cell line studies. DNA methylation decreased moderately in 99% of all genes, with a median beta-value reduction of 0.018; the most pronounced effects seen in heterochromatin. Aza-induced hypomethylation correlated significantly with change in H3K9me3. The pattern of H3K18ac and H3K9me3 displayed large differences between patients and healthy controls without any consistent pattern induced by Aza. We conclude that the marked induction of gene expression only partly could be explained by epigenetic changes, and propose that activation of ERVs may contribute to the clinical effects of Aza in MDS.
  • Kiesewetter, Barbara; Cherny, Nathan I.; Boissel, Nicolas; Cerisoli, Francesco; Dafni, Urania; de Vries, Elisabeth G. E.; Ghia, Paolo; Goekbuget, Nicola; Gonzalez-Calle, Veronica; Huntly, Brian; Jaeger, Ulrich; Latino, Nicola Jane; Douillard, Jean-Yves; Malcovati, Luca; Mateos, Maria-Victoria; Ossenkoppele, Gert J.; Porkka, Kimmo; Raderer, Markus; Ribera, Josep-Maria; Scarfo, Lydia; Wester, Ruth; Zygoura, Panagiota; Sonneveld, Pieter (2020)
    Objective Value frameworks in oncology have not been validated for the assessment of treatments in haematological malignancies, but to avoid overlaps and duplications it appears reasonable to build up experience on existing value frameworks, such as the European Society for Medical Oncology-Magnitude of Clinical Benefit Scale (ESMO-MCBS). Methods Here we present the results of the first feasibility testing of the ESMO-MCBS v1.1 for haematological malignancies based on the grading of 80 contemporary studies for acute leukaemia, chronic leukaemia, lymphoma, myeloma and myelodysplastic syndromes. The aims were (1) to evaluate the scorability of data, (2) to evaluate the reasonableness of the generated grades for clinical benefit using the current version and (3) to identify shortcomings in the ESMO-MCBS v1.1 that require amendments to improve the efficacy and validity of the scale in grading new treatments in the management of haematological malignancies. Results In general, the ESMO-MCBS v1.1 was found to be widely applicable to studies in haematological malignancies, generating scores that were judged as reasonable by European Hematology Association (EHA) experts. A small number of studies could either not be graded or were not appropriately graded. The reasons, related to the differences between haematological and solid tumour malignancies, are identified and described. Conclusions Based on the findings of this study, ESMO and EHA are committed to develop a version of the ESMO-MCBS that is validated for haematological malignancies. This development process will incorporate all of the usual stringencies for accountability of reasonableness that have characterised the development of the ESMO-MCBS including field testing, statistical modelling, evaluation for reasonableness and openness to appeal and revision. Applying such a scale will support future public policy decision-making regarding the value of new treatments for haematological malignancies and will provide insights that could be helpful in the design of future clinical trials.