Browsing by Subject "RNA"

Sort by: Order: Results:

Now showing items 1-20 of 66
  • Mehine, Miika; Khamaiseh, Sara; Ahvenainen, Terhi; Heikkinen, Tuomas; Äyräväinen, Anna; Pakarinen, Päivi; Härkki, Päivi; Pasanen, Annukka; Bützow, Ralf; Vahteristo, Pia (2020)
    Simple Summary Uterine leiomyomas are benign smooth muscle tumors affecting millions of women globally. On a molecular level, leiomyomas can be classified into three main subtypes, each characterized by mutations affecting either MED12, HMGA2, or FH. Leiomyomas are still widely regarded as a single entity, although early observations suggest that different subtypes behave differently, in terms of both clinical outcomes and therapeutic requirements. The majority of classification studies on leiomyomas have been performed using fresh frozen tissue. Archival formalin-fixed paraffin-embedded (FFPE) tissue represents an invaluable source of biological material that can be studied retrospectively. Methods capable of generating high-quality data from FFPE material are in high demand. Here, we show that 3 ' RNA sequencing can accurately classify leiomyomas that have been stored as FFPE tissue in hospital archives for years. A targeted 3 ' RNA sequencing panel could provide researchers and clinicians with a cost-effective and scalable diagnostic tool for classifying smooth muscle tumors. Uterine leiomyomas are benign smooth muscle tumors occurring in 70% of women of reproductive age. The majority of leiomyomas harbor one of three well-established genetic changes: a hotspot mutation in MED12, overexpression of HMGA2, or biallelic loss of FH. The majority of studies have classified leiomyomas by complex and costly methods, such as whole-genome sequencing, or by combining multiple traditional methods, such as immunohistochemistry and Sanger sequencing. The type of specimens and the amount of resources available often determine the choice. A more universal, cost-effective, and scalable method for classifying leiomyomas is needed. The aim of this study was to evaluate whether RNA sequencing can accurately classify formalin-fixed paraffin-embedded (FFPE) leiomyomas. We performed 3 ' RNA sequencing with 44 leiomyoma and 5 myometrium FFPE samples, revealing that the samples clustered according to the mutation status of MED12, HMGA2, and FH. Furthermore, we confirmed each subtype in a publicly available fresh frozen dataset. These results indicate that a targeted 3 ' RNA sequencing panel could serve as a cost-effective and robust tool for stratifying both fresh frozen and FFPE leiomyomas. This study also highlights 3 ' RNA sequencing as a promising method for studying the abundance of unexploited tissue material that is routinely stored in hospital archives.
  • Buettner, Ralf; Le Xuan Truong Nguyen; Kumar, Bijender; Morales, Corey; Liu, Chao; Chen, Lisa S.; Pemovska, Tea; Synold, Timothy W.; Palmer, Joycelynne; Thompson, Ryan; Li, Ling; Dinh Hoa Hoang; Zhang, Bin; Ghoda, Lucy; Kowolik, Claudia; Kontro, Mika; Leitch, Calum; Wennerberg, Krister; Yu, Xiaochun; Chen, Ching-Cheng; Horne, David; Gandhi, Varsha; Pullarkat, Vinod; Marcucci, Guido; Rosen, Steven T. (2019)
    Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD (+) MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.
  • Veija, T.; Koljonen, V.; Bohling, T.; Kero, M.; Knuutila, S.; Sarhadi, Virinder Kaur (2017)
    BACKGROUND: Distinct characteristic features categorize Merkel cell carcinoma (MCC) into two subgroups according to the Merkel cell polyomavirus infection. Many mutational studies on MCC have been carried out in recent years without identifying a prominent driver mutation. However, there is paucity reporting the expression of cancer genes at the RNA level in MCC tumors. In this study, we studied the RNA expression profiles of 26 MCC tumors, with a goal to identify prospective molecular targets that could improve the treatment strategies of MCC. METHODS: RNA expression of 50 cancer-related genes in 26 MCC tumors was analyzed by targeted amplicon based next-generation sequencing using the Ion Torrent technology and the expression compared with that of normal, non-cancerous skin samples. Sequencing data were processed using Torrent Suite Software. Expression profiles of MCV-negative and MCV-positive tumors were compared. Fluorescence in situ hybridization was performed to study ALK rearrangements and immunohistochemistry to study ALK expression in tumor tissue. RESULTS: ALK, CDKN2A, EZH2 and ERBB4 were overexpressed, and EGFR, ERBB2, PDGFRA and FGFR1 were underexpressed in MCC tumors compared to normal skin. In the MCV-negative tumors, MET, NOTCH1, FGFR3, and SMO were overexpressed and JAK3 and NPM1 were under-expressed compared to the MCV-positive tumors. CONCLUSIONS: High expression of ALK, CDKN2A and EZH2 was recorded in MCC tumors. No ALK fusion was seen by FISH analysis. Overexpression of EZH2 suggests its potential as a drug target in MCC.
  • Veija, Tuukka; Koljonen, Virve; Böhling, Tom; Kero, Mia; Knuutila, Sakari; Sarhadi, Virinder K (BioMed Central, 2017)
    Abstract Background Distinct characteristic features categorize Merkel cell carcinoma (MCC) into two subgroups according to the Merkel cell polyomavirus infection. Many mutational studies on MCC have been carried out in recent years without identifying a prominent driver mutation. However, there is paucity reporting the expression of cancer genes at the RNA level in MCC tumors. In this study, we studied the RNA expression profiles of 26 MCC tumors, with a goal to identify prospective molecular targets that could improve the treatment strategies of MCC. Methods RNA expression of 50 cancer-related genes in 26 MCC tumors was analyzed by targeted amplicon based next-generation sequencing using the Ion Torrent technology and the expression compared with that of normal, non-cancerous skin samples. Sequencing data were processed using Torrent Suite™ Software. Expression profiles of MCV-negative and MCV-positive tumors were compared. Fluorescence in situ hybridization was performed to study ALK rearrangements and immunohistochemistry to study ALK expression in tumor tissue. Results ALK, CDKN2A, EZH2 and ERBB4 were overexpressed, and EGFR, ERBB2, PDGFRA and FGFR1 were underexpressed in MCC tumors compared to normal skin. In the MCV-negative tumors, MET, NOTCH1, FGFR3, and SMO were overexpressed and JAK3 and NPM1 were under-expressed compared to the MCV-positive tumors. Conclusions High expression of ALK, CDKN2A and EZH2 was recorded in MCC tumors. No ALK fusion was seen by FISH analysis. Overexpression of EZH2 suggests its potential as a drug target in MCC.
  • Zhao, Ke; Li, Jing; Shen, Meiling; Chen, Qiang; Liu, Maoke; Ao, Xiaolin; Liao, Decong; Gu, Yunfu; Xu, Kaiwei; Ma, Menggen; Yu, Xiumei; Xiang, Quanju; Chen, Ji; Zhang, Xiaoping; Penttinen, Petri (2018)
    Many actinobacteria produce secondary metabolites that include antimicrobial compounds. Since most of the actinobacteria cannot be cultivated, their antimicrobial potential awaits to be revealed. We hypothesized that the actinobacterial endophyte communities inside Melia toosendan (Chinaberry) tree are diverse, include strains with antimicrobial activity, and that antimicrobial activity can be detected using a cultivation independent approach and co-occurrence analysis. We isolated and identified actinobacteria from Chinaberry, tested their antimicrobial activities, and characterized the communities using amplicon sequencing and denaturing gradient gel electrophoresis as cultivation independent methods. Most of the isolates were identified as Streptomyces spp., whereas based on amplicon sequencing the most abundant OTU was assigned to Rhodococcus, and Tomitella was the most diverse genus. Out of the 135 isolates, 113 inhibited the growth of at least one indicator organism. Six out of the 7577 operational taxonomic units (OTUs) matched 46 cultivated isolates. Only three OTUs, Streptomyces OTU4, OTU11, and OTU26, and their corresponding isolate groups were available for comparing co-occurrences and antimicrobial activity. Streptomyces OTU4 correlated negatively with a high number of OTUs, and the isolates corresponding to Streptomyces OTU4 had high antimicrobial activity. However, for the other two OTUs and their corresponding isolate groups there was no clear relation between the numbers of negative correlations and antimicrobial activity. Thus, the applicability of co-occurrence analysis in detecting antimicrobially active actinobacteria could not be proven.
  • Ouwerkerk, Janneke P.; van der Ark, Kees C. H.; Davids, Mark; Claassens, Nico J.; Finestra, Teresa Robert; de Vos, Willem M.; Belzer, Clara (2016)
    Akkermansia muciniphila colonizes the mucus layer of the gastrointestinal tract, where the organism can be exposed to the oxygen that diffuses from epithelial cells. To understand how A. muciniphila is able to survive and grow at this oxic-anoxic interface, its oxygen tolerance and response and reduction capacities were studied. A. muciniphila was found to be oxygen tolerant. On top of this, under aerated conditions, A. muciniphila showed significant oxygen reduction capacities and its growth rate and yield were increased compared to those seen under strict anaerobic conditions. Transcriptome analysis revealed an initial oxygen stress response upon exposure to oxygen. Thereafter, genes related to respiration were expressed, including those coding for the cytochrome bd complex, which can function as a terminal oxidase. The functionality of A. muciniphila cytochrome bd genes was proven by successfully complementing cytochrome-deficient Escherichia coli strain ECOM4. We conclude that A. muciniphila can use oxygen when it is present at nanomolar concentrations. IMPORTANCE This article explains how Akkermansia muciniphila, previously described as a strictly anaerobic bacterium, is able to tolerate and even benefit from low levels of oxygen. Interestingly, we measured growth enhancement of A. muciniphila and changes in metabolism as a result of the oxygen exposure. In this article, we discuss similarities and differences of this oxygen-responsive mechanism with respect to those of other intestinal anaerobic isolates. Taken together, we think that these are valuable data that indicate how anaerobic intestinal colonizing bacteria can exploit low levels of oxygen present in the mucus layer and that our results have direct relevance for applicability, as addition of low oxygen concentrations could benefit the in vitro growth of certain anaerobic organisms.
  • Eskelin , Katri; Lampi, Mirka; Coustau, Christine; Imani, Jafargholi; Kogel, Karl-Heinz; Poranen, Minna (2022)
    Robust RNA purification and analysis methods are required to support the development of RNA vaccines and therapeutics as well as RNA interference-based crop protection solutions. Asymmetrical flow field -flow fractionation (AF4) is a gentle native purification method that applies liquid flows to separate sample components based on their hydrodynamic sizes. We recently showed that AF4 can be utilized to separate RNA molecules that are shorter than 110 nucleotides (nt), but the performance of AF4 in the analysis and purification of longer RNA molecules has not been previously evaluated. Here, we studied the perfor-mance of AF4 in separation of single-stranded (ss) and double-stranded (ds) RNA molecules in the size range of 75-6400 nt. In addition, we evaluated the power of AF4 coupling to different detectors, allow-ing separation to be combined with data collection on yield as well as molecular weight ( MW ) and size distribution. We show that AF4 method is applicable in RNA purification, quality control, and analytics, and results in good recoveries of ssRNA and dsRNA molecules. In addition, our results demonstrate the utility of AF4 multidetection platforms to study biophysical properties of long RNA molecules.(c) 2022 The Author(s). Published by Elsevier B.V.This is an open access article under the CC BY license ( )
  • Levanova, Alesia; Poranen, Minna Marjetta (2018)
    Steric exclusion chromatography (SXC) is a method for separation of large target solutes based on their association with a hydrophilic stationary phase through mutual steric exclusion of polyethylene glycol (PEG). Selectivity in SXC is determined by the size or shape (or both) of the solutes alongside the size and concentration of PEG molecules. Elution is achieved by decreasing the PEG concentration. In this study, SXC applicability for the separation and purification of single-stranded (ss) and double-stranded (ds) RNA molecules was evaluated for the first time. The retention of ssRNA and dsRNA molecules of different lengths on convective interaction media (CIM) monolithic columns was systematically studied under variable PEG-6000 and NaCl concentrations. We determined that over 90% of long ssRNAs (700-6374 nucleotides) and long dsRNAs (500-6374 base pairs) are retained on the stationary phase in 15% PEG-6000 and >= 0.4 M NaCl. dsDNA and dsRNA molecules of the same length were partially separated by SXC. Separation of RNA molecules below 100 nucleotides from longer RNA species is easily achieved by SXC. Furthermore, SXC has the potential to separate dsRNAs from ssRNAs of the same length. We also demonstrated that SXC is suitable for the enrichment of ssRNA (PRR1 bacteriophage) and dsRNA (Phi6 bacteriophage) viral genomes from contaminating cellular RNA species. In summary, SXC on CIM monolithic columns is an appropriate tool for rapid RNA separation and concentration. (C) 2018 The Authors. Published by Elsevier B.V.
  • Giaretta, Paula R.; Suchodolski, Jan S.; Jergens, Albert E.; Steiner, Jorg M.; Lidbury, Jonathan A.; Cook, Audrey K.; Hanifeh, Mohsen; Spillmann, Thomas; Kilpinen, Susanne; Syrja, Pernilla; Rech, Raquel R. (2020)
    The intestinal microbiota is believed to play a role in the pathogenesis of inflammatory bowel disease in humans and chronic inflammatory enteropathy (CIE) in dogs. While most previous studies have described the gut microbiota using sequencing methods, it is fundamental to assess the spatial distribution of the bacteria for a better understanding of their relationship with the host. The microbiota in the colonic mucosa of 22 dogs with CIE and 11 control dogs was investigated using fluorescence in situ hybridization (FISH) with a universal eubacterial probe (EUB338) and specific probes for select bacterial groups. The number of total bacteria labeled with EUB338 probe was lower within the colonic crypts of dogs with CIE compared to controls. Helicobacter spp. and Akkermansia spp. were decreased on the colonic surface and in the crypts of dogs with CIE. Dogs with CIE had increased number of Escherichia coli/Shigella spp. on the colonic surface and within the crypts compared to control dogs. In conclusion, the bacterial microbiota in the colonic mucosa differed between dogs with and without CIE, with depletion of the crypt bacteria in dogs with CIE. The crypt bacterial species that was intimately associated with the host mucosa in control dogs was composed mainly of Helicobacter spp.
  • Partanen, Pasi; Hultman, Jenni; Paulin, Lars; Auvinen, Petri; Romantschuk, Martin (2010)
  • Li, Xiaolei; Wu, Zhiqiang; An, Xiaojing; Mei, Qian; Bai, Miaomiao; Hanski, Leena; Li, Xiang; Ahola, Tero; Han, Weidong (2017)
    Acquired therapeutic resistance by tumors is a substantial impediment to reducing the morbidity and mortality that are attributable to human malignancies. The mechanisms responsible for the dramatic shift between chemosensitivity and chemoresistance in colorectal carcinoma have not been defined. Here, we report that LRP16 selectively interacts and activates double-stranded RNA-dependent kinase (PKR), and also acts as scaffolds to assist the formation of a ternary complex of PKR and IKK beta, prolonging the polymers of ADP-ribose (PAR)-dependent nuclear factor kappa B (NF-kappa B) transactivation caused by DNA-damaging agents and confers acquired chemoresistance. We also identified a small molecule, MRS2578, which strikingly abrogated the binding of LRP16 to PKR and IKK beta, converting LRP16 into a death molecule and forestalling colon tumorigenesis. Inclusion of MRS2578 with etoposide, versus each drug alone, exhibited synergistic antitumor cytotoxicity in xenografts. Our combinatorial approach introduces a strategy to enhance the efficacy of genotoxicity therapies for the treatment of tumors.
  • Reichhardt, Martin P.; Lundin, Karolina; Lokki, A. Inkeri; Recher, Gaëlle; Vuoristo, Sanna; Katayama, Shintaro; Tapanainen, Juha S.; Kere, Juha; Meri, Seppo; Tuuri, Timo (2019)
    It is essential for early human life that mucosal immunological responses to developing embryos are tightly regulated. An imbalance of the complement system is a common feature of pregnancy complications. We hereby present the first full analysis of the expression and deposition of complement molecules in human pre-implantation embryos. Thus, far, immunological imbalance has been considered in stages of pregnancy following implantation. We here show that complement activation against developing human embryos takes place already at the pre-implantation stage. Using confocal microscopy, we observed deposition of activation products on healthy developing embryos, which highlights the need for strict complement regulation. We show that embryos express complement membrane inhibitors and bind soluble regulators. These findings show that mucosal complement targets human embryos, and indicate potential adverse pregnancy outcomes, if regulation of activation fails. In addition, single-cell RNA sequencing revealed cellular expression of complement activators. This shows that the embryonic cells themselves have the capacity to express and activate C3 and C5. The specific local embryonic expression of complement components, regulators, and deposition of activation products on the surface of embryos suggests that complement has immunoregulatory functions and furthermore may impact cellular homeostasis and differentiation at the earliest stages of life.
  • EU-CardioRNA COST Action CA17129; de Gonzalo-Calvo, David; Marchese, Monica; Hellemans, Jan; Lakkisto, Päivi; Devaux, Yvan (2022)
    Despite promising findings, quantitative PCR (qPCR)-based tests for RNA quantification have experienced serious limitations in their clinical application. The noticeable lack of technical standardization remains a huge obstacle in the translation of qPCR-based tests. The incorporation of qPCR-based tests into the clinic will benefit from guidelines for clinical research assay validation. This will ultimately impact the clinical management of the patient, including diagnosis, prognosis, prediction, monitoring of the therapeutic response, and evaluation of toxicity. However, clear assay validation protocols for biomarker investigation in clinical trials using molecular assays are currently lacking. Here, we will focus on the necessary steps, including sample acquisition, processing and storage, RNA purification, target selection, assay design, and experimental design, that need to be taken toward the appropriate validation of qRT-PCR assays in clinical research. These recommendations can fill the gap between research use only (RUO) and in vitro diagnostics (IVD). Our contribution provides a tool for basic and clinical research for the development of validated assays in the intermediate steps of biomarker research. These guidelines are based on the current understanding and consensus within the EU-CardioRNA COST Action consortium (www. Their applicability encompasses all clinical areas.
  • Kun, Roland S.; Meng, Jiali; Salazar-Cerezo, Sonia; Makela, Miia R.; de Vries, Ronald P.; Garrigues, Sandra (2020)
    The CRISPR/Cas9 system has been successfully applied for gene editing in filamentous fungi. Previous studies reported that single stranded oligonucleotides can be used as repair templates to induce point mutations in some filamentous fungi belonging to genus Aspergillus. In Aspergillus niger, extensive research has been performed on regulation of plant biomass degradation, addressing transcription factors such as XlnR or GaaR, involved in (hemi-)cellulose and pectin utilization, respectively. Single nucleotide mutations leading to constitutively active forms of XlnR and GaaR have been previously reported. However, the mutations were performed by the introduction of versions obtained through site-directed or UV-mutagenesis into the genome. Here we report a more time- and cost-efficient approach to obtaining constitutively active versions by application of the CRISPR/Cas9 system to generate the desired mutation on-site in the A. niger genome. This was also achieved using only 60-mer single stranded oligonucleotides, shorter than the previously reported 90-mer strands. In this study, we show that CRISPR/Cas9 can also be used to efficiently change functional properties of the proteins encoded by the target gene by on-site genomic mutations in A. niger. The obtained strains with constitutively active XlnR and GaaR versions resulted in increased production of plant biomass degrading enzymes and improved release of D-xylose and L-arabinose from wheat bran, and D-galacturonic acid from sugar beet pulp.
  • Chia, Loo Wee; Hornung, Bastian V. H.; Aalvink, Steven; Schaap, Peter J.; de Vos, Willem M.; Knol, Jan; Belzer, Clara (2018)
    Host glycans are paramount in regulating the symbiotic relationship between humans and their gut bacteria. The constant flux of host-secreted mucin at the mucosal layer creates a steady niche for bacterial colonization. Mucin degradation by keystone species subsequently shapes the microbial community. This study investigated the transcriptional response during mucin-driven trophic interaction between the specialised mucin-degrader Akkermansia muciniphila and a butyrogenic gut commensal Anaerostipes caccae. A. muciniphila monocultures and co-cultures with non-mucolytic A. caccae from the Lachnospiraceae family were grown anaerobically in minimal media supplemented with mucin. We analysed for growth, metabolites (HPLC analysis), microbial composition (quantitative reverse transcription PCR), and transcriptional response (RNA-seq). Mucin degradation by A. muciniphila supported the growth of A. caccae and concomitant butyrate production predominantly via the acetyl-CoA pathway. Differential expression analysis (DESeq 2) showed the presence of A. caccae induced changes in the A. muciniphila transcriptional response with increased expression of mucin degradation genes and reduced expression of ribosomal genes. Two putative operons that encode for uncharacterised proteins and an efflux system, and several two-component systems were also differentially regulated. This indicated A. muciniphila changed its transcriptional regulation in response to A. caccae. This study provides insight to understand the mucin-driven microbial ecology using metatranscriptomics. Our findings show that the expression of mucolytic enzymes by A. muciniphila increases upon the presence of a community member. This could indicate its role as a keystone species that supports the microbial community in the mucosal environment by increasing the availability of mucin sugars.
  • Kuuluvainen, Emilia; Domenech-Moreno, Eva; Niemela, Elina H.; Makela, Tomi P. (2018)
    In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by beta-catenin, which has previously been shown to associate with MED12. Importantly, beta-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4.
  • Pradhan, Barun; Cajuso, Tatiana; Katainen, Riku; Sulo, Paivi; Tanskanen, Tomas; Kilpivaara, Outi; Pitkanen, Esa; Aaltonen, Lauri A.; Kauppi, Liisa; Palin, Kimmo (2017)
    Long interspersed nuclear elements-1 (L1s) are a large family of retrotransposons. Retrotransposons are repetitive sequences that are capable of autonomous mobility via a copy-and-paste mechanism. In most copy events, only the L1 sequence is inserted, however, they can also mobilize the flanking non-repetitive region by a process known as 3' transduction. L1 insertions can contribute to genome plasticity and cause potentially tumorigenic genomic instability. However, detecting the activity of a particular source L1 and identifying new insertions stemming from it is a challenging task with current methodological approaches. We developed a long-distance inverse PCR (LDI-PCR) based approach to monitor the mobility of active L1 elements based on their 3' transduction activity. LDI-PCR requires no prior knowledge of the insertion target region. By applying LDI-PCR in conjunction with Nanopore sequencing (Oxford Nanopore Technologies) on one L1 reported to be particularly active in human cancer genomes, we detected 14 out of 15 3' transductions previously identified by whole genome sequencing in two different colorectal tumour samples. In addition we discovered 25 novel highly subclonal insertions. Furthermore, the long sequencing reads produced by LDI-PCR/Nanopore sequencing enabled the identification of both the 5' and 3' junctions and revealed detailed insertion sequence information.
  • De, Swarnalok; Chavez-Calvillo, Gabriela; Wahlsten, Matti; Mäkinen, Kristiina (2018)
    Infection caused by the synergistic interaction of two plant viruses is typically manifested by severe symptoms and increased accumulation of either virus. In potex-potyviral synergism, the potyviral RNA silencing suppressor helper component proteinase (HCPro) is known to enhance the pathogenicity of the potexvirus counterpart. In line with this, Potato virus X (PVX; genus Potexvirus) genomic RNA (gRNA) accumulation and gene expression from subgenomic RNA (sgRNA) are increased in Nicotiana benthamiana by Potato virus A (PVA; genus Potyvirus) HCPro expression. Recently, we have demonstrated that PVA HCPro interferes with the host cell methionine cycle by interacting with its key enzymes S-adenosyl-l-methionine synthetase (SAMS) and S-adenosyl-l-homocysteine hydrolase (SAHH). To study the involvement of methionine cycle enzymes in PVX infection, we knocked down SAMS and SAHH. Increased PVX sgRNA expression between 3 and 9 days post-infiltration (dpi) and upregulation of (-)-strand gRNA accumulation at 9 dpi were observed in the SAHH-silenced background. We found that SAMS and SAHH silencing also caused a significant reduction in glutathione (GSH) concentration, specifically in PVX-infected plants between 2 and 9 dpi. Interestingly, HCPro expression in PVX-infected plants caused an even stronger reduction in GSH levels than did SAMS+SAHH silencing and a similar level of reduction was also achieved by knocking down GSH synthetase. PVX sgRNA expression was increased in the GSH synthetase-silenced background. GSH is a major antioxidant of plant cells and therefore GSH shortage may explain the strong oxidative stress and severe symptoms observed during potex-potyvirus mixed infection.
  • Ollila, Saara; Andressoo, Jaan-Olle (2021)
    DNA:n korjausmekanismit ovat kehittyneet säilyttämään DNA-molekyylit riittävän virheettöminä solun ja eliön elinkyvyn säilyttämiseksi sukupolvelta toiselle. Periytyvät muutokset DNA:ssa voivat johtaa perinnöllisiin sairauksiin, mutta toisaalta ne sallivat perimän vaihtelun ja sitä kautta evoluution. Somaattisten kudosten solujen DNA:han kerääntyvät virheet liittyvät lääketieteen näkökulmasta ennen kaikkea syöpien kehitykseen sekä ikääntymiseen, ja DNA:n korjausmekanismien tutkimus onkin aiemmin liittynyt pääasiallisesti näihin ilmiöihin. Viime aikoina valtavasti kehittyneet geenien muokkausmenetelmät, kuten CRISPR-Cas, luovat uusia mahdollisuuksia hoitaa ihmisten sairauksia genomia muokkaamalla. Solunsisäiset DNA:n korjausmekanismit ovat keskeisiä ja luovat reunaehdot genomin muokkaukselle.
  • Hautala, Timo; Partanen, Terhi; Sironen, Tarja; Rajaniemi, Saara-Mari; Hautala, Nina; Vainio, Olli; Vapalahti, Olli; Kauma, Heikki; Vaheri, Antti (2013)