Browsing by Subject "RNA-SEQ"

Sort by: Order: Results:

Now showing items 1-16 of 16
  • Vanlandewijck, Michael; He, Liqun; Mäe, Maarj A. Andaloussi; Andrae, Johanna; Ando, Koji; Del Gaudio, Francesca; Nahar, Khayrun; Lebouvier, Thibaud; Lavina, Barbara; Gouveia, Leonor; Sun, Ying; Raschperger, Elisabeth; Räsänen, Markus; Zarb, Yvette; Mochizuki, Naoki; Keller, Annika; Lendahl, Urban; Betsholtz, Christer (2018)
    Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.
  • Dinu, Liviu P.; Ionescu, Radu Tudor; Tomescu, Alexandru I. (2014)
  • Oghenekaro, Abbot O.; Raffaello, Tommaso; Kovalchuk, Andriy; Asiegbu, Fred O. (2016)
    Background: The basidiomycete Rigidoporus microporus is a fungus that causes the white rot disease of the tropical rubber tree, Hevea brasiliensis, the major source of commercial natural rubber. Besides its lifestyle as a pathogen, the fungus is known to switch to saprotrophic growth on wood with the ability to degrade both lignin and cellulose. There is almost no genomic or transcriptomic information on the saprotrophic abilities of this fungus. In this study, we present the fungal transcriptomic profiles during saprotrophic growth on rubber wood. Results: A total of 266.6 million RNA-Seq reads were generated from six libraries of the fungus growing either on rubber wood or without wood. De novo assembly produced 34, 518 unigenes with an average length of 217(bp. Annotation of unigenes using public databases; GenBank, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups (COG) and Gene Ontology (GO) produced 25, 880 annotated unigenes. Transcriptomic profiling analysis revealed that the fungus expressed over 300 genes encoding lignocellulolytic enzymes. Among these, 175 genes were up-regulated in rubber wood. These include three members of the glycoside hydrolase family 43, as well as various glycosyl transferases, carbohydrate esterases and polysaccharide lyases. A large number of oxidoreductases which includes nine manganese peroxidases were also significantly up-regulated in rubber wood. Several genes involved in fatty acid metabolism and degradation as well as natural rubber degradation were expressed in the transcriptome. Four genes (acyl-CoA synthetase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA acetyltransferase) potentially involved in rubber latex degradation pathway were also induced. A number of ATP binding cassette (ABC) transporters and hydrophobin genes were significantly expressed in the transcriptome during saprotrophic growth. Some genes related to energy metabolism were also induced. Conclusions: The analysed data gives an insight into the activation of lignocellulose breakdown machinery of R. microporus. This study also revealed genes with relevance in antibiotic metabolism (e.g. cephalosporin esterase) as well as those with potential applications in fatty acid degradation. This is the first study on the transcriptomic analysis of R. microporus on rubber wood and should serve as a pioneering resource for future studies of the fungus at the genomic or transcriptomic level.
  • Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling (2017)
    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3'-hydroxylase (NMCH), and 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This transcriptomic database provides new directions for future studies on clarifying the aporphine alkaloid pathway.
  • Pan, David Z.; Miao, Zong; Comenho, Caroline; Rajkumar, Sandhya; Koka, Amogha; Lee, Seung Hyuk T.; Alvarez, Marcus; Kaminska, Dorota; Ko, Arthur; Sinsheimer, Janet S.; Mohlke, Karen L.; Mancuso, Nicholas; Munoz-Hernandez, Linda Liliana; Herrera-Hernandez, Miguel; Tusie-Luna, Maria Teresa; Aguilar-Salinas, Carlos; Pietiläinen, Kirsi H.; Pihlajamäki, Jussi; Laakso, Markku; Garske, Kristina M.; Pajukanta, Päivi (2021)
    Background: Obesity predisposes individuals to multiple cardiometabolic disorders, including type 2 diabetes (T2D). As body mass index (BMI) cannot reliably differentiate fat from lean mass, the metabolically detrimental abdominal obesity has been estimated using waist-hip ratio (WHR). Waist-hip ratio adjusted for body mass index (WHRadjBMI) in turn is a well-established sex-specific marker for abdominal fat and adiposity, and a predictor of adverse metabolic outcomes, such as T2D. However, the underlying genes and regulatory mechanisms orchestrating the sex differences in obesity and body fat distribution in humans are not well understood. Methods: We searched for genetic master regulators of WHRadjBMI by employing integrative genomics approaches on human subcutaneous adipose RNA sequencing (RNA-seq) data (n similar to 1400) and WHRadjBMI GWAS data (n similar to 700,000) from the WHRadjBMI GWAS cohorts and the UK Biobank (UKB), using co-expression network, transcriptome-wide association study (TWAS), and polygenic risk score (PRS) approaches. Finally, we functionally verified our genomic results using gene knockdown experiments in a human primary cell type that is critical for adipose tissue function. Results: Here, we identified an adipose gene co-expression network that contains 35 obesity GWAS genes and explains a significant amount of polygenic risk for abdominal obesity and T2D in the UKB (n = 392,551) in a sex-dependent way. We showed that this network is preserved in the adipose tissue data from the Finnish Kuopio Obesity Study and Mexican Obesity Study. The network is controlled by a novel adipose master transcription factor (TF), TBX15, a WHRadjBMI GWAS gene that regulates the network in trans. Knockdown of TBX15 in human primary preadipocytes resulted in changes in expression of 130 network genes, including the key adipose TFs, PPARG and KLF15, which were significantly impacted (FDR < 0.05), thus functionally verifying the trans regulatory effect of TBX15 on the WHRadjBMI co-expression network. Conclusions: Our study discovers a novel key function for the TBX15 TF in trans regulating an adipose co-expression network of 347 adipose, mitochondrial, and metabolically important genes, including PPARG, KLF15, PPARA, ADIPOQ, and 35 obesity GWAS genes. Thus, based on our converging genomic, transcriptional, and functional evidence, we interpret the role of TBX15 to be a main transcriptional regulator in the adipose tissue and discover its importance in human abdominal obesity.
  • Sood, Sanjana; Szkop, Krzysztof J.; Nakhuda, Asif; Gallagher, Iain J.; Murie, Carl; Brogan, Robert J.; Kaprio, Jaakko; Kainulainen, Heikki; Atherton, Philip J.; Kujala, Urho M.; Gustafsson, Thomas; Larsson, Ola; Timmons, James A. (2016)
    DNA microarrays and RNAseq are complementary methods for studying RNA molecules. Current computational methods to determine alternative exon usage (AEU) using such data require impractical visual inspection and still yield high false-positive rates. Integrated Gene and Exon Model of Splicing (iGEMS) adapts a gene-level residuals model with a gene size adjusted false discovery rate and exon-level analysis to circumvent these limitations. iGEMS was applied to two new DNA microarray datasets, including the high coverage Human Transcriptome Arrays 2.0 and performance was validated using RT-qPCR. First, AEU was studied in adipocytes treated with (n = 9) or without (n = 8) the anti-diabetes drug, rosiglitazone. iGEMS identified 555 genes with AEU, and robust verification by RT-qPCR (similar to 90%). Second, in a three-way human tissue comparison (muscle, adipose and blood, n = 41) iGEMS identified 4421 genes with at least one AEU event, with excellent RT-qPCR verification (95%, n = 22). Importantly, iGEMS identified a variety of AEU events, including 3'UTR extension, as well as exon inclusion/exclusion impacting on protein kinase and extracellular matrix domains. In conclusion, iGEMS is a robust method for identification of AEU while the variety of exon usage between human tissues is 5-10 times more prevalent than reported by the Genotype-Tissue Expression consortium using RNA sequencing.
  • Tessier, Laurence; Cote, Olivier; Clark, Mary Ellen; Viel, Laurent; Diaz-Mendez, Andres; Anders, Simon; Bienzle, Dorothee (2017)
    Background: Severe equine asthma is a naturally occurring lung inflammatory disease of mature animals characterized by neutrophilic inflammation, bronchoconstriction, mucus hypersecretion and airway remodeling. Exacerbations are triggered by inhalation of dust and microbial components. Affected animals eventually are unable of aerobic performance. In this study transcriptomic differences between asthmatic and non-asthmatic animals in the response of the bronchial epithelium to an inhaled challenge were determined. Results: Paired endobronchial biopsies were obtained pre- and post-challenge from asthmatic and non-asthmatic animals. The transcriptome, determined by RNA-seq and analyzed with edgeR, contained 111 genes differentially expressed (DE) after challenge between horses with and without asthma, and 81 of these were upregulated. Genes involved in neutrophil migration and activation were in central location in interaction networks, and related gene ontology terms were significantly overrepresented. Relative abundance of specific gene products as determined by immunohistochemistry was correlated with differential gene expression. Gene sets involved in neutrophil chemotaxis, immune and inflammatory response, secretion, blood coagulation and apoptosis were overrepresented among up-regulated genes, while the rhythmic process gene set was overrepresented among down-regulated genes. MMP1, IL8, TLR4 and MMP9 appeared to be the most important proteins in connecting the STRING protein network of DE genes. Conclusions: Several differentially expressed genes and networks in horses with asthma also contribute to human asthma, highlighting similarities between severe human adult and equine asthma. Neutrophil activation by the bronchial epithelium is suggested as the trigger of the inflammatory cascade in equine asthma, followed by epithelial injury and impaired repair and differentiation. Circadian rhythm dysregulation and the sonic Hedgehog pathway were identified as potential novel contributory factors in equine asthma.
  • Smillie, Christopher S.; Biton, Moshe; Ordovas-Montanes, Jose; Sullivan, Ken M.; Burgin, Grace; Graham, Daniel B.; Herbst, Rebecca H.; Rogel, Noga; Slyper, Michel; Waldman, Julia; Sud, Malika; Andrews, Elizabeth; Velonias, Gabriella; Haber, Adam L.; Jagadeesh, Karthik; Vickovic, Sanja; Yao, Junmei; Stevens, Christine; Dionne, Danielle; Nguyen, Lan T.; Villani, Alexandra-Chloe; Hofree, Matan; Creasey, Elizabeth A.; Huang, Hailiang; Rozenblatt-Rosen, Orit; Garber, John J.; Khalili, Hamed; Desch, A. Nicole; Daly, Mark J.; Ananthakrishnan, Ashwin N.; Shalek, Alex K.; Xavier, Ramnik J.; Regev, Aviv (2019)
    Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To understand their cell type specificities and pathways of action, we generate an atlas of 366,650 cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, stromal, and immune cell subsets, including BEST4(+) enterocytes, microfold-like cells, and IL13RA2(+)IL11(+) inflammatory fibroblasts, which we associate with resistance to anti-TNF treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many UC risk genes are cell type specific and coregulated within relatively few gene modules, suggesting convergence onto limited sets of cell types and pathways. Using this observation, we nominate and infer functions for specific risk genes across GWAS loci. Our work provides a framework for interrogating complex human diseases and mapping risk variants to cell types and pathways.
  • Jin, Long; Yu, Jian Ping; Yang, Zai Jun; Merilä, Juha; Liao, Wen Bo (2018)
    Hibernation is an effective energy conservation strategy that has been widely adopted by animals to cope with unpredictable environmental conditions. The liver, in particular, plays an important role in adaptive metabolic adjustment during hibernation. Mammalian studies have revealed that many genes involved in metabolism are differentially expressed during the hibernation period. However, the differentiation in global gene expression between active and torpid states in amphibians remains largely unknown. We analyzed gene expression in the liver of active and torpid Asiatic toads (Bufo gargarizans) using RNA-sequencing. In addition, we evaluated the differential expression of genes between females and males. A total of 1399 genes were identified as differentially expressed between active and torpid females. Of these, the expressions of 395 genes were significantly elevated in torpid females and involved genes responding to stresses, as well as contractile proteins. The expression of 1004 genes were significantly down-regulated in torpid females, most which were involved in metabolic depression and shifts in the energy utilization. Of the 715 differentially expressed genes between active and torpid males, 337 were up-regulated and 378 down-regulated. A total of 695 genes were differentially expressed between active females and males, of which 655 genes were significantly down-regulated in males. Similarly, 374 differentially expressed genes were identified between torpid females and males, with the expression of 252 genes (mostly contractile proteins) being significantly down-regulated in males. Our findings suggest that expression of many genes in the liver of B. gargarizans are down-regulated during hibernation. Furthermore, there are marked sex differences in the levels of gene expression, with females showing elevated levels of gene expression as compared to males, as well as more marked down-regulation of gene-expression in torpid males than females.
  • Tervaniemi, Mari H.; Katayama, Shintaro; Skoog, Tiina; Siitonen, H. Annika; Vuola, Jyrki; Nuutila, Kristo; Sormunen, Raija; Johnsson, Anna; Linnarsson, Sten; Suomela, Sari; Kankuri, Esko; Kere, Juha; Elomaa, Outi (2016)
    Psoriatic skin differs distinctly from normal skin by its thickened epidermis. Most gene expression comparisons utilize full-thickness biopsies, with substantial amount of dermis. We assayed the transcriptomes of normal, lesional, and non-lesional psoriatic epidermis, sampled as split-thickness skin grafts, with 5'-end RNA sequencing. We found that psoriatic epidermis contains more mRNA per total RNA than controls, and took this into account in the bioinformatic analysis. The approach highlighted innate immunity-related pathways in psoriasis, including NOD-like receptor (NLR) signaling and inflammasome activation. We demonstrated that the NLR signaling genes NOD2, PYCARD, CARD6, and IFI16 are upregulated in psoriatic epidermis, and strengthened these findings by protein expression. Interestingly, PYCARD, the key component of the inflammasome, showed an altered expression pattern in the lesional epidermis. The profiling of non-lesional skin highlighted PSORS4 and mitochondrially encoded transcripts, suggesting that their gene expression is altered already before the development of lesions. Our data suggest that all components needed for the active inflammasome are present in the keratinocytes of psoriatic skin. The characterization of inflammasome pathways provides further opportunities for therapy. Complementing previous transcriptome studies, our approach gives deeper insight into the gene regulation in psoriatic epidermis.
  • Tohonen, Virpi; Katayama, Shintaro; Vesterlund, Liselotte; Jouhilahti, Eeva-Mari; Sheikhi, Mona; Madissoon, Elo; Filippini-Cattaneo, Giuditta; Jaconi, Marisa; Johnsson, Anna; Burglin, Thomas R.; Linnarsson, Sten; Hovatta, Outi; Kere, Juha (2015)
    Transcriptional program that drives human preimplantation development is largely unknown. Here, by using single-cell RNA sequencing of 348 oocytes, zygotes and single blastomeres from 2- to 3-day-old embryos, we provide a detailed analysis of the human preimplantation transcriptome. By quantifying transcript far 50-ends (TFEs), we include in our analysis transcripts that derive from alternative promoters. We show that 32 and 129 genes are transcribed during the transition from oocyte to four-cell stage and from four-to eight-cell stage, respectively. A number of identified transcripts originates from previously unannotated genes that include the PRD-like homeobox genes ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB and LEUTX. Employing de novo promoter motif extraction on sequences surrounding TFEs, we identify significantly enriched gene regulatory motifs that often overlap with Alu elements. Our high-resolution analysis of the human transcriptome during preimplantation development may have important implications on future studies of human pluripotent stem cells and cell reprograming.
  • Bruserud, Oyvind; Costea, Danieta-Elena; Laakso, Saila; Garty, Ben-Zion; Mathisen, Eirik; Mäkitie, Antti; Mäkitie, Outi; Husebye, Eystein S. (2018)
    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) or Autoimmune polyendocrine syndrome type-1 (APS-1) (APECED, OMIM 240300) is a rare, childhood onset, monogenic disease caused by mutations in the Autoimmune Regulator (AIRE) gene. The overall mortality is increased compared to the general population and a major cause of death includes malignant diseases, especially oral and esophageal cancers. We here present a case series of four APS-1 patients with oral tongue cancers, an entity not described in detail previously. Scrutiny of history and clinical phenotypes indicate that chronic mucocutaneous candidiasis and smoking are significant risk factors. Preventive measures and early diagnosis are important to successfully manage this potentially fatal disease.
  • Savarese, Marco; Jonson, Per Harald; Huovinen, Sanna; Paulin, Lars; Auvinen, Petri; Udd, Bjarne; Hackman, Peter (2018)
    Background: Mutations in the titin gene (TTN) cause a large spectrum of diseases affecting skeletal and/or cardiac muscle. TTN includes 363 coding exons, a repeated region with a high degree of complexity, isoform-specific elements, and metatranscript-only exons thought to be expressed only during fetal development. Although three main classes of isoforms have been described so far, alternative splicing events (ASEs) in different tissues or in different developmental and physiological states have been reported. Methods: To achieve a comprehensive view of titin ASEs in adult human skeletal muscles, we performed a RNA-Sequencing experiment on 42 human biopsies collected from 12 anatomically different skeletal muscles of 11 individuals without any skeletal-muscle disorders. Results: We confirmed that the skeletal muscle N2A isoforms are highly prevalent, but we found an elevated number of alternative splicing events, some at a very high level. These include previously unknown exon skipping events and alternative 5' and 3' splice sites. Our data suggests the partial inclusion in the TTN transcript of some metatranscript-only exons and the partial exclusion of canonical N2A exons. Conclusions: This study provides an extensive picture of the complex TTN splicing pattern in human adult skeletal muscle, which is crucial for a proper clinical interpretation of TTN variants.
  • Wang, Cui; Wang, Tong; Yin, Meiqi; Eller, Franziska; Liu, Lele; Brix, Hans; Guo, Weihua (2021)
    Polyploidization in plants is thought to have occurred as coping mechanism with environmental stresses. Polyploidization-driven adaptation is often achieved through interplay of gene networks involved in differentially expressed genes, which triggers the plant to evolve special phenotypic traits for survival. Phragmites australis is a cosmopolitan species with highly variable phenotypic traits and high adaptation capacity to various habitats. The species' ploidy level varies from 3x to 12x, thus it is an ideal organism to investigate the molecular evolution of polyploidy and gene regulation mediated by different numbers of chromosome copies. In this study, we used high-throughput RNAseq data as a tool, to analyze the gene expression profiles in tetraploid and octoploid P. australis. The estimated divergence time between tetraploid and octoploid P. australis was dated to the border between Pliocene and Pleistocene. This study identified 439 up- and 956 down-regulated transcripts in tetraploids compared to octoploids. Gene ontology and pathway analysis revealed that tetraploids tended to express genes responsible for reproduction and seed germination to complete the reproduction cycle early, and expressed genes related to defense against UV-B light and fungi, whereas octoploids expressed mainly genes related to thermotolerance. Most differentially expressed genes were enriched in chaperones, folding catalysts and protein processing in endoplasmic reticulum pathways. Multiple biased isoform usage of the same gene was detected in differentially expressed genes, and the ones upregulated in octoploids were related to reduced DNA methylation. Our study provides new insights into the role of polyploidization on environmental responses and potential stress tolerance in grass species.
  • Fortino, Vittorio; Smolander, Olli-Pekka; Auvinen, Petri; Tagliaferri, Roberto; Greco, Dario (2014)
  • Kinaret, Pia Anneli Sofia; Serra, Angela; Federico, Antonio; Kohonen, Pekka; Nymark, Penny; Liampa, Irene; Ha, My Kieu; Choi, Jang-Sik; Jagiello, Karolina; Sanabria, Natasha; Melagraki, Georgia; Cattelani, Luca; Fratello, Michele; Sarimveis, Haralambos; Afantitis, Antreas; Yoon, Tae-Hyun; Gulumian, Mary; Grafström, Roland; Puzyn, Tomasz; Greco, Dario (2020)
    The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms' responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series.