Browsing by Subject "ROOTS"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Liu, Miao; Zhao, Yang; Liu, Xiucheng; Korpelainen, Helena; Li, Chunyang (2022)
    Nitrogen (N) fertilization is a promising approach to improve salt tolerance. However, it is poorly known how plant sex and inorganic N alter salt stress-induced Na+ uptake, distribution and tolerance. This study employed Populus cathayana Rehder females and males to examine sex-related mechanisms of salt tolerance under nitrate (NO3-) and ammonium (NH4+) nutrition. Males had a higher root Na+ efflux, lower root-to-shoot translocation of Na+, and higher K+/Na+, which enhanced salt tolerance under both N forms compared to females. On the other hand, decreased root Na+ efflux and K+ retention, and an increased ratio of Na+ in leaves relative to shoots in females caused greater salt sensitivity. Females receiving NH4+ rather than NO3- had greater net root Na+ uptake, K+ efflux, and translocation to the shoots, especially in leaves. In contrast, males receiving NO3- rather than NH4+ had increased Na+ translocation to the shoots, especially in the bark, which may narrow the difference in leaf damage by salt stress between N forms despite a higher shoot Na+ accumulation and lower root Na+ efflux. Genes related to cell wall synthesis, K+ and Na+ transporters, and denaturized protein scavenging in the barks showed differential expression between females and males in response to salt stress under both N forms. These results suggested that the regulation of N forms in salt stress tolerance was sex-dependent, which was related to the maintenance of the K+/Na+ ratio in tissues, the ability of Na+- translocation to the shoots, and the transcriptional regulation of bark cell wall and proteolysis profiles.
  • Pershina, Elizaveta; Valkonen, Jari Pekka Tapani; Kurki, Paivi; Ivanova, Ekaterina; Chirak, Evgeny; Korvigo, Ilia; Provorov, Nykolay; Andronov, Evgeny (2015)
    One of the most important challenges in agriculture is to determine the effectiveness and environmental impact of certain farming practices. The aim of present study was to determine and compare the taxonomic composition of the microbiomes established in soil following long-term exposure (14 years) to a conventional and organic farming systems (CFS and OFS accordingly). Soil from unclared forest next to the fields was used as a control. The analysis was based on RT-PCR and pyrosequencing of 16S rRNA genes of bacteria and archaea. The number of bacteria was significantly lower in CFS than in OFS and woodland. The highest amount of archaea was detected in woodland, whereas the amounts in CFS and OFS were lower and similar. The most common phyla in the soil microbial communities analyzed were Proteobacteria (57.9%), Acidobacteria (16.1%), Actinobacteria (7.9%), Verrucomicrobia (2.0%), Bacteroidetes (2.7%) and Firmicutes (4.8%). Woodland soil differed from croplands in the taxonomic composition of microbial phyla. Croplands were enriched with Proteobacteria (mainly the genus Pseudomonas), while Acidobacteria were detected almost exclusively in woodland soil. The most pronounced differences between the CFS and OFS microbiomes were found within the genus Pseudomonas, which significantly (p<0,05) increased its number in CFS soil compared to OFS. Other differences in microbiomes of cropping systems concerned minor taxa. A higher relative abundance of bacteria belonging to the families Oxalobacteriaceae, Koribacteriaceae, Nakamurellaceae and genera Ralstonia, Paenibacillus and Pedobacter was found in CFS as compared with OFS. On the other hand, microbiomes of OFS were enriched with proteobacteria of the family Comamonadaceae (genera Hylemonella) and Hyphomicrobiaceae, actinobacteria from the family Micrococcaceae, and bacteria of the genera Geobacter, Methylotenera, Rhizobium (mainly Rhizobium leguminosarum) and Clostridium. Thus, the fields under OFS and CFS did not differ greatly for the composition of the microbiome. These results, which were also confirmed by cluster analysis, indicated that microbial communities in the field soil do not necessarily differ largely between conventional and organic farming systems.
  • Zweifel, Roman; Etzold, Sophia; Sterck, Frank; Gessler, Arthur; Anfodillo, Tommaso; Mencuccini, Maurizio; von Arx, Georg; Lazzarin, Martina; Haeni, Matthias; Feichtinger, Linda; Meusburger, Katrin; Knuesel, Simon; Walthert, Lorenz; Salmon, Yann; Bose, Arun K.; Schoenbeck, Leonie; Hug, Christian; De Girardi, Nicolas; Giuggiola, Arnaud; Schaub, Marcus; Rigling, Andreas (2020)
    Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.
  • Yrjönen, Teijo; Vuorela, Heikki; Kauppila, Tiina J. (2017)
    Desorption atmospheric pressure photoionization (DAPPI) is an ambient mass spectrometry (MS) technique that can be used for the analysis of polar and nonpolar compounds directly from surfaces. Here, the feasibility of DAPPI-MS in the screening of plant metabolites from dried Peucedanum palustre leaves and umbels was studied. DAPPI-MS requires no prior sample preparation or chromatographic separation, and the analysis can therefore be performed directly from the untreated plant material. P. palustre contains several linear and angular furanocoumarins, some of which are specific for the species. The DAPPI mass spectra of both leaf and umbel samples showed distinct ions at m/z 445 and 443 in positive and negative ion modes, respectively. MS2 analyses of these ions confirmed that the ions were the protonated and deprotonated molecules, respectively, of peulustrin and its isomers, which have only been identified from P. palustre. The direct analysis of dried plant material by DAPPI-MS was shown to provide a fast and reliable means to confirm the identity of plant materials, to study the metabolite profiles of plants, and to screen biologically relevant compounds from plant surfaces.
  • Rasmussen, Pil U.; Abrego, Nerea; Roslin, Tomas; Opik, Maarja; Sepp, Siim-Kaarel; Blanchet, F. Guillaume; Huotari, Tea; Hugerth, Luisa W.; Tack, Ayco J. M. (2022)
    Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.
  • Kiheri, Heikki; Velmala, Sannakajsa; Pennanen, Taina; Timonen, Sari; Sietiö, Outi-Maaria; Fritze, Hannu; Heinonsalo, Jussi; van Dijk, Netty; Dise, Nancy; Larmola, Tuula (2020)
    Northern peatlands are often dominated by ericaceous shrub species which rely on ericoid mycorrhizal fungi (ERM) for access to organic sources of nutrients, such as nitrogen (N) and phosphorus (P), and host abundant dark septate endophytes (DSE). Relationships between hosts and fungal symbionts may change during deposition of anthropogenic N and P. We studied the long-term effects of N and P addition on two ericaceous shrubs, Calluna vulgaris and Erica tetralix, at Whim Bog, Scotland by analyzing fungal colonization of roots, enzymatic activity, and fungal species composition. Unexpectedly, the frequency of typical ERM intracellular colonization did not change while the occurrence of ERM hyphae tended to increase and DSE hyphae to decrease. Our findings indicate that altered nutrient limitations shift root associated fungal colonization patterns as well as affecting ericaceous root enzyme activity and thereby decomposition potential. Reduction of recalcitrant fungal biomass in melanized DSE may have implications for peatland C sequestration under nutrient addition.
  • Adamczyk, Bartosz; Sietio, Outi-Maaria; Biasi, Christina; Heinonsalo, Jussi (2019)
    See also the Commentary on this article by Hattenschwiler et al., 223: 5-7.
  • Wasonga, Daniel O.; Kleemola, Jouko; Alakukku, Laura; Mäkelä, Pirjo S. A. (2020)
    Water deficit limits cassava (Manihot esculenta Crantz) productivity in drought-prone areas and alters the nutritive quality of the crop. Potassium (K) may mitigate the effects of water deficit and improve the nutritional content of cassava, which would alleviate malnutrition among the human population in the tropics who depend on cassava as a staple food. Pot experiments were conducted under controlled glasshouse conditions to investigate the influence of deficit irrigation and K fertigation on the nutritive and anti-nutritive quality of biofortified cassava during the early growth phase. Treatments initiated at 30 days after planting were three irrigation doses (30, 60, 100% pot capacity) that were split to five K (0.01, 1, 4, 16, and 32 mM) concentrations. Plants were harvested at 90 days after planting, and the starch, energy, carotenoid, crude protein, fiber, minerals, and cyanide concentration of the leaves and roots were determined. Irrigation and K treatments showed significant (P <0.05) interactions for starch, carotenoid, energy, and cyanide concentration. An irrigation dose of 30% together with 0.01 mM K resulted in the lowest starch, carotenoid, energy, and fiber content, but highest cyanide concentration, relative to full-irrigated (100%) plants together with 16 mM K. When the K application rate was 16 mM the best nutritional quality was obtained, with the lowest cyanide concentration, regardless of irrigation dose. Moreover, nutritional traits showed strong positive associations, whereas cyanide concentration correlated negatively with all the nutritional traits. Notably, an irrigation dose of 60% together with 16 mM K reduced the nutritional content the least and showed minimal increase in cyanide concentration. The results indicate that K fertigation with adjusted irrigation may improve the dietary quality of young cassava and reduce antinutrients, which could enhance the nutrient bioavailability of cassava grown in drought-prone areas.
  • Wang, Ai-Fang; Di, Bao; Repo, Tapani; Roitto, Marja; Zhang, Gang (2020)
    Background and Objectives: Drought occurs more frequently in Northern China with the advent of climate change, which might increase the mortality of tree seedlings after afforestation due to hydraulic failure. Therefore, investigating water relations helps us understand the drought tolerance of tree seedlings. Electrical impedance spectroscopy (EIS) is widely used to assess the responses of plant tissues to stress factors and may potentially reveal the water relations of cells. The aim of this study is to reveal the relationships between EIS and water related parameters, produced by pressure-volume (PV) curves in lacebark pine (Pinus bungeanaZucc.) seedlings reacting to drought stress. Materials and Methods: Four-year-old pot seedlings were divided into three parts (0, 5, and 10 days of drought) before planting, the treated seedlings were then replanted, and finally exposed to post-planting drought treatments with the following soil relative water contents: (i) adequate irrigation (75%-80%), (ii) light drought (55%-60%), (iii) moderate drought (35%-40%), and (iv), severe drought (15%-20%). During the post-planting growth phase, the EIS parameters of needles and shoots, and the parameters of PV curves, were measured coincidently; thus, the correlations between them could be obtained. Results: The extracellular resistance (r(e)) of needles and shoots were substantially reduced after four weeks of severe post-planting drought stress. Meanwhile, the osmotic potential at the turgor-loss point (psi(tlp)) and the saturation water osmotic potential (psi(sat)) of shoots decreased after drought stress, indicating an osmotic adjustment in acclimating to drought. The highest correlations were found between the intracellular resistance (r(i)) of the shoots and psi(tlp) and psi(sat). Conclusions: EIS parameters can be used as a measure of drought tolerance. The change in intracellular resistance is related to the osmotic potential of the cell and cell wall elasticity. Extracellular resistance is a parameter that shows cell membrane damage in response to drought stress in lacebark pine seedlings.
  • EFSA Panel Dietetic Prod (2016)
    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on EstroG-100 (TM) as a novel food (NF) submitted pursuant to Regulation (EC) No 258/97 of the European Parliament and of the Council. The NF is EstroG-100 (TM), a hot-water extract of a mixture of three herbal roots (Cynanchum wilfordii Hemsley, Phlomis umbrosa Turcz. and Angelica gigas Nakai), which is concentrated and spray-dried. The information provided on the composition, specifications and stability of the NF is sufficient, and does not raise safety concerns. The applicant intends to use EstroG-100 (TM) in food supplements, with a proposed maximum intake level of 514 mg/day. The target population is post-menopausal women. The Panel considers that the information provided does not raise safety concerns as regards the genotoxicity of the NF. The Panel considers that the no-observed-adverse effect level (NOAEL) derived from the subchronic 90-day oral toxicity study with EstroG-100 (TM), which was supported by observations in other studies, is 500 mg/kg body weight (bw) per day. Taking into account the NOAEL and the proposed maximum intake level, the Panel considers that the margin of safety of 68 is not sufficient. Based on the absence of chronic toxicity data, increase in effects with exposure duration in toxicity studies, and the absence of investigations of liver parameters and haematology in human studies, the Panel applies the uncertainty factor of 200 to derive the maximum safe intake level for the NF. Thus, the Panel concludes that the NF, EstroG-100 (TM), is safe for the use in food supplements at the maximum intake level of 175 mg/day for an adult of 70 kg bw. (C) 2016 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
  • Barrera, Gerardo; Manrique-Mirón, Paulo (2022)
    In this manuscript we give an extension of the classic Salem-Zygmund inequality for locally sub-Gaussian random variables. As an application, the concentration of the roots of a Kac polynomial is studied, which is the main contribution of this manuscript. More precisely, we assume the existence of the moment generating function for the iid random coefficients for the Kac polynomial and prove that there exists an annulus of width O(n(-2)(log n)(-1/2-gamma)), gamma > 1/2 around the unit circle that does not contain roots with high probability. As an another application, we show that the smallest singular value of a random circulant matrix is at least n(-rho), rho is an element of (0, 1/4) with probability 1 - O(n(-2 rho)).
  • Rinta-Kanto, Johanna M.; Timonen, Sari (2020)
    Mycorrhizal fungi have a strong impact on soil biota. In this study, bacterial and archaeal populations in different parts of Suillus bovinus - Pinus sylvestris mycorrhizospheres in boreal forest were quantified and identified by DNA analysis. The numbers of bacterial and archaeal 16S rRNA gene copies were highest in uncolonized humus and lowest in fruiting bodies. The numbers of bacterial 16S rRNA gene copies varied from 1.3 x 10(7) to 3.1 x 10(9) copies g(-1) fw and archaeal copies from 4.1 x 10(7) to 9.6 x 10(8) copies g(-1) fw. The relatively high number of archaeal 16S rRNA gene copies was likely due to the cold and highly organic habitat. The presence of hyphae appeared to further promote archaeal numbers and the archaea:bacteria ratio was over one in samples containing only fungal material. Most detected archaea belonged to terrestrial Thaumarchaeota. Proteobacteria, Actinobacteria and Acidobacteria were predictably the dominating bacterial taxa in the samples with clear trend of Betaproteobacteria preferring the pine root habitats.