Browsing by Subject "Renal renin-angiotensin system"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Törmänen, Suvi; Pörsti, Ilkka; Lakkisto, Päivi; Tikkanen, Ilkka; Niemelä, Onni; Paavonen, Timo; Mustonen, Jukka; Eräranta, Arttu (2017)
    Background: We studied whether endothelin receptor antagonist and calcimimetic treatments influence renal damage and kidney renin-angiotensin (RA) components in adenine-induced chronic renal insufficiency (CRI). Methods: Male Wistar rats (n = 80) were divided into 5 groups for 12 weeks: control (n = 12), 0.3% adenine (Ade; n = 20), Ade + 50 mg/kg/day sitaxentan (n = 16), Ade + 20 mg/kg/day cinacalcet (n = 16), and Ade + sitaxentan + cinacalcet (n = 16). Blood pressure (BP) was measured using tail-cuff, kidney histology was examined, and RA components measured using RT-qPCR. Results: Adenine caused tubulointerstitial damage with severe CRI, anemia, hyperphosphatemia, 1.8-fold increase in urinary calcium excretion, and 3.5-fold and 18-fold increases in plasma creatinine and PTH, respectively. Sitaxentan alleviated tubular atrophy, while sitaxentan + cinacalcet combination reduced interstitial inflammation, tubular dilatation and atrophy in adenine-rats. Adenine diet did not influence kidney angiotensin converting enzyme (ACE) and AT(4) receptor mRNA, but reduced mRNA of renin, AT(1a), AT(2), (pro) renin receptor and Mas to 40-60%, and suppressed ACE2 to 6% of that in controls. Sitaxentan reduced BP by 8 mmHg, creatinine, urea, and phosphate concentrations by 16-24%, and PTH by 42%. Cinacalcet did not influence BP or creatinine, but reduced PTH by 84%, and increased hemoglobin by 28% in adenine-rats. The treatments further reduced renin mRNA by 40%, while combined treatment normalized plasma PTH, urinary calcium, and increased ACE2 mRNA 2.5-fold versus the Ade group (p <0.001). Conclusions: In adenine-induced interstitial nephritis, sitaxentan improved renal function and tubular atrophy. Sitaxentan and cinacalcet reduced kidney renin mRNA by 40%, while their combination alleviated tubulointerstitial damage and urinary calcium loss, and increased kidney tissue ACE2 mRNA.
  • Törmänen, Suvi; Pörsti, Ilkka; Lakkisto, Päivi; Tikkanen, Ilkka; Niemelä, Onni; Paavonen, Timo; Mustonen, Jukka; Eräranta, Arttu (BioMed Central, 2017)
    Abstract Background We studied whether endothelin receptor antagonist and calcimimetic treatments influence renal damage and kidney renin-angiotensin (RA) components in adenine-induced chronic renal insufficiency (CRI). Methods Male Wistar rats (n = 80) were divided into 5 groups for 12 weeks: control (n = 12), 0.3% adenine (Ade; n = 20), Ade + 50 mg/kg/day sitaxentan (n = 16), Ade + 20 mg/kg/day cinacalcet (n = 16), and Ade + sitaxentan + cinacalcet (n = 16). Blood pressure (BP) was measured using tail-cuff, kidney histology was examined, and RA components measured using RT-qPCR. Results Adenine caused tubulointerstitial damage with severe CRI, anemia, hyperphosphatemia, 1.8-fold increase in urinary calcium excretion, and 3.5-fold and 18-fold increases in plasma creatinine and PTH, respectively. Sitaxentan alleviated tubular atrophy, while sitaxentan + cinacalcet combination reduced interstitial inflammation, tubular dilatation and atrophy in adenine-rats. Adenine diet did not influence kidney angiotensin converting enzyme (ACE) and AT4 receptor mRNA, but reduced mRNA of renin, AT1a, AT2, (pro)renin receptor and Mas to 40–60%, and suppressed ACE2 to 6% of that in controls. Sitaxentan reduced BP by 8 mmHg, creatinine, urea, and phosphate concentrations by 16–24%, and PTH by 42%. Cinacalcet did not influence BP or creatinine, but reduced PTH by 84%, and increased hemoglobin by 28% in adenine-rats. The treatments further reduced renin mRNA by 40%, while combined treatment normalized plasma PTH, urinary calcium, and increased ACE2 mRNA 2.5-fold versus the Ade group (p < 0.001). Conclusions In adenine-induced interstitial nephritis, sitaxentan improved renal function and tubular atrophy. Sitaxentan and cinacalcet reduced kidney renin mRNA by 40%, while their combination alleviated tubulointerstitial damage and urinary calcium loss, and increased kidney tissue ACE2 mRNA.