Browsing by Subject "Reprogramming"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Sokka, Juho Joonas; Yoshihara, Masahito; Kvist, Jouni; Laiho, Laura; Warren, Andrew; Stadelmann, Christian; Jouhilahti, Eeva-Mari; Kilpinen, Helena; Balboa, Diego; Katayama, Shintaro; Kyttälä, Aija; Kere, Juha; Otonkoski, Timo; Weltner, Jere; Trokovic, Ras (2022)
    Conventional reprogramming methods rely on the ectopic expression of transcription factors to reprogram somatic cells into induced pluripotent stem cells (iPSCs). The forced expression of transcription factors may lead to off-target gene activation and heterogeneous reprogramming, resulting in the emergence of alternative cell types and aberrant iPSCs. Activation of endogenous pluripotency factors by CRISPR activation (CRISPRa) can reduce this heterogeneity. Here, we describe a high-efficiency reprogramming of human somatic cells into iPSCs using optimized CRISPRa. Efficient reprogramming was dependent on the additional targeting of the embryo genome activation-enriched Alu-motif and the miR-302/367 locus. Single-cell transcriptome analysis revealed that the optimized CRISPRa reprogrammed cells more directly and specifically into the pluripotent state when compared to the conventional reprogramming method. These findings support the use of CRISPRa for high-quality pluripotent reprogramming of human cells.
  • Weltner, Jere; Trokovic, Ras (Humana press, 2021)
    Methods in Molecular Biology
    CRISPR-mediated gene activation (CRISPRa) can be used to target endogenous genes for activation. By targeting pluripotency-associated reprogramming factors, human fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs). Here, we describe a method for the derivation of iPSCs from human fibroblasts using episomal plasmids encoding CRISPRa components. This chapter also provides procedure to assemble guide RNA cassettes and generation of multiplexed guide plasmids for readers who want to design their own guide RNAs.
  • de Back, Walter; Zimm, Roland; Brusch, Lutz (2013)
    Background: Replacement of dysfunctional beta-cells in the islets of Langerhans by transdifferentiation of pancreatic acinar cells has been proposed as a regenerative therapy for diabetes. Adult acinar cells spontaneously revert to a multipotent state upon tissue dissociation in vitro and can be stimulated to redifferentiate into beta-cells. Despite accumulating evidence that contact-mediated signals are involved, the mechanisms regulating acinar-to-islet cell transdifferentiation remain poorly understood. Results: In this study, we propose that the crosstalk between two contact-mediated signaling mechanisms, lateral inhibition and lateral stabilization, controls cell fate stability and transdifferentiation of pancreatic cells. Analysis of a mathematical model combining gene regulation with contact-mediated signaling reveals the multistability of acinar and islet cell fates. Inhibition of one or both modes of signaling results in transdifferentiation from the acinar to the islet cell fate, either by dedifferentiation to a multipotent state or by direct lineage switching. Conclusions: This study provides a theoretical framework to understand the role of contact-mediated signaling in pancreatic cell fate control that may help to improve acinar-to-islet cell transdifferentiation strategies for beta-cell neogenesis.