Browsing by Subject "Root traits"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Xia, Zhichao; Yu, Lei; He, Yue; Korpelainen, Helena; Li, Chunyang (2019)
    Tree performance in mixed-species forest plantations is ultimately the net result of positive and negative interactions among species. Despite increasing knowledge of interspecific interactions, relatively little is known about the chemical mechanisms mediating such interactions. We constructed mixed planting systems with two species including Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) and broadleaf species Cinnamomum camphora L. Presl, Elaeocarpus decipiens Hemsl, Liquidambar formosana Hance, or Michelia macclurei Dandy. Based on a series of manipulative experiments, we investigated the performance of Chinese fir and analyzed root placement patterns and the composition of main soil microbial groups. The broadleaf trees influenced the growth of Chinese fir roots more than the growth of shoots. Furthermore, C. camphora roots released allelochemicals into the soil environment, resulting in growth inhibition of Chinese fir and changes in main soil microbial groups. However, when grown with E. decipiens and M. macclurei, the growth of Chinese fir was consistently promoted. It responded by enhancing its root growth and altering root behavior, resulting in a shift from growth inhibition to chemical facilitation. These positive inter-specific interactions also stimulated changes in the composition of soil microbes. Complementary experiments indicated that non-toxic signaling molecules in the root exudates of E. decipiens and M. macclurei may be responsible for mediating positive root-root interactions and regulating the composition of main soil microbial groups. Thus, our study demonstrated that broadleaf species chemically mediate the growth of Chinese fir through root exudates. Such a novel mechanism offers many implications and applications for reforestation programs undertaken to rehabilitate forest plantations that suffer from declining productivity related to densely planted monocultures.
  • Belachew, Kiflemariam Yehuala; Nagel, Kerstin; Fiorani, Fabio; Stoddard, Frederick Lothrop (2018)
    Background Soil moisture deficiency causes yield reduction and instability in faba bean (Vicia faba L.) production. The extent of sensitivity to drought stress varies across accessions originating from diverse moisture regimes of the world. Hence, we conducted successive greenhouse experiments in pots and rhizotrons to explore diversity in root responses to soil water deficit. Methods A set of 89 accessions from wet and dry growing regions of the world was defined according to the Focused Identification of Germplasm Strategy and screened in a perlite-sand medium under well watered conditions in a greenhouse experiment. Stomatal conductance, canopy temperature, chlorophyll concentration, and root and shoot dry weights were recorded during the fifth week of growth. Eight accessions representing the range of responses were selected for further investigation. Starting five days after germination, they were subjected to a root phenotyping experiment using the automated phenotyping platform GROWSCREEN-Rhizo. The rhizotrons were filled with peat-soil under well watered and water limited conditions. Root architectural traits were recorded five, 12, and 19 days after the treatment (DAT) began. Results In the germplasm survey, accessions from dry regions showed significantly higher values of chlorophyll concentration, shoot and root dry weights than those from wet regions. Root and shoot dry weight as well as seed weight, and chlorophyll concentration were positively correlated with each other. Accession DS70622 combined higher values of root and shoot dry weight than the rest. The experiment in GROWSCREEN-Rhizo showed large differences in root response to water deficit. The accession by treatment interactions in taproot and second order lateral root lengths were significant at 12 and 19 DAT, and the taproot length was reduced up to 57% by drought. The longest and deepest root systems under both treatment conditions were recorded by DS70622 and DS11320, and total root length of DS70622 was three times longer than that of WS99501, the shortest rooted accession. The maximum horizontal distribution of a root system and root surface coverage were positively correlated with taproot and total root lengths and root system depth. DS70622 and WS99501 combined maximum and minimum values of these traits, respectively. Thus, roots of DS70622 and DS11320, from dry regions, showed drought-avoidance characteristics whereas those of WS99501 and Melodie/2, from wet regions, showed the opposite. Discussion The combination of the germplasm survey and use of GROWSCREEN-Rhizo allowed exploring of adaptive traits and detection of root phenotypic markers for potential drought avoidance. The greater root system depth and root surface coverage, exemplified by DS70622 and DS11320, can now be tested as new sources of drought tolerance.
  • Xia, Zhichao; He, Yue; Yu, Lei; Miao, Jie; Korpelainen, Helena; Li, Chunyang (2020)
    Soil phosphorus (P) availability and its distribution influence plant growth and productivity. To evaluate strategies that allow genotypes to be efficient under variable P environments, we planted six hybrid Populus deltoides clones belonging to the section Aigeiros (Aig), LL1, LL9, NL351, NL35, NL1388 and NL895, to three growth conditions in a greenhouse experiment, including low P, a high homogenous P supply and a high heterogeneous P supply. Functional traits, including foliar and root traits as well as rhizosphere processes, were measured. Large genotypic variation in shoot biomass and leaf P concentration was found in response to the P supply level and pattern. Compared with no P supply, LL1, LL9 and NL895 had a greater root length, biomass and P concentration in leaves under a homogenous P supply, while growth traits of NL351, NL35 and NL1388 were not significantly affected. A heterogeneous P supply enhanced the shoot biomass of LL1 and LL9. The root proliferation of LL1 and LL9 in P-rich patches was related to increased P acquisition in leaves. By contrast, a heterogeneous P supply did not enhance the biomass accumulation and the morphological plasticity of roots in other four genotypes, NL351, NL35, NL895 and NL1388, in P-rich patches. We found that functional traits or rhizosphere processes under low P could predict high P performance in Populus clones. Genotypes with a higher specific root length under low P can accumulate a larger biomass under a homogenous P supply. Conversely, high acid phosphatase concentrations decreased the positive impact of a heterogeneous P supply on a genotype's performance. Our results provide implications and applications for silviculture and forest management.