Browsing by Subject "SATELLITE CELLS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Omairi, Saleh; Matsakas, Antonios; Degens, Hans; Kretz, Oliver; Hansson, Kenth-Arne; Solbra, Andreas Vavang; Bruusgaard, Jo C.; Joch, Barbara; Sartori, Roberta; Giallourou, Natasa; Mitchell, Robert; Collins-Hooper, Henry; Foster, Keith; Pasternack, Arja; Ritvos, Olli; Sandri, Marco; Narkar, Vihang; Swann, Jonathan R.; Huber, Tobias B.; Patel, Ketan (2016)
    A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Erry) on the myostatin (Mtn) mouse null background (Mtn(-/-)Err gamma(Tg/+)) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn(-/-)Err gamma(Tg/+) mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced.
  • Davegardh, C; Sall, J; Benrick, A; Broholm, C; Volkov, P; Perfilyev, A; Henriksen, TI; Wu, Y; Hjort, L; Brons, C; Hansson, O; Pedersen, M; Wurthner, JU; Pfeffer, K; Nilsson, E; Vaag, A; Stener-Victorin, E; Pircs, K; Scheele, C; Ling, C (2021)
    Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39(+/-) mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D. Insulin resistance and lower muscle strength in relation to mass are hallmarks of type 2 diabetes. Here, the authors report alterations in muscle stem cells from individuals with type 2 diabetes that may contribute to these phenotypes through VPS39 mediated effects on autophagy and epigenetics.