Browsing by Subject "SAWLOGS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Pyorala, Jiri; Kankare, Ville; Liang, Xinlian; Saarinen, Ninni; Rikala, Juha; Kivinen, Veli-Pekka; Sipi, Marketta; Holopainen, Markus; Hyyppa, Juha; Vastaranta, Mikko (2019)
    Wood procurement in sawmills could be improved by resolving detailed three-dimensional stem geometry references from standing timber. This could be achieved, using the increasingly available terrestrial point clouds from various sources. Here, we collected terrestrial laser-scanning (TLS) data from 52 Scots pines (Pinus sylvestris L.) with the purpose of evaluating the accuracy of the log geometry and analysing its relationship with wood quality. For reference, the log-specific top-end diameter, volume, tapering, sweep, basic density and knottiness were measured in a sawmill. We produced stem models from the TLS data and bucked them into logs similar to those measured in the sawmill. In comparison to the sawmill data, the log-specific TLS-based top-end diameter, volume, taper and sweep estimates showed relative mean differences of 1.6, -2.4, -3.0 and 78 per cent, respectively. The correlation coefficients between increasing taper and decreasing wood density and whorl-to-whorl distances were 0.49 and -0.51, respectively. Although the stem-model geometry was resolved from the point clouds with similar accuracy to that at the sawmills, the remaining uncertainty in defining the sweep and linking the wood quality with stem geometry may currently limit the method's feasibilities. Instead of static TLS, mobile platforms would likely be more suitable for operational point cloud data acquisition.
  • Pyörälä, Jiri; Liang, Xinlian; Vastaranta, Mikko; Saarinen, Ninni; Kankare, Ville; Wang, Yunsheng; Holopainen, Markus; Hyyppä, Juha (2018)
    State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to introduce a method that produces similar wood quality indicators in standing forests as those currently used in sawmills. Our aim was to develop a quantitative method to detect and model branches from terrestrial laser scanning (TLS) point clouds data of trees in a forest environment. The test data were obtained from 158 Scots pines (Pinus sylvestris L.) in six mature forest stands. The method was evaluated for the accuracy of the following branch parameters: Number of whorls per tree and for every whorl, the maximum branch diameter and the branch insertion angle associated with it. The analysis concentrated on log-sections (stem diameter > 15 cm) where the branches most affect wood's value added. The quantitative whorl detection method had an accuracy of 69.9% and a 1.9% false positive rate. The estimates of the maximum branch diameters and the corresponding insertion angles for each whorl were underestimated by 0.34 cm (11.1%) and 0.67 degrees (1.0%), with a root-mean-squared error of 1.42 cm (46.0%) and 17.2 degrees (26.3%), respectively. Distance from the scanner, occlusion, and wind were the main external factors that affect the method's functionality. Thus, the completeness and point density of the data should be addressed when applying TLS point cloud based tree models to assess branch parameters.