Sort by: Order: Results:

Now showing items 1-20 of 56
  • Berndt, Torsten; Mender, Bernhard; Scholz, Wiebke; Fischer, Lukas; Herrmann, Hartmut; Kulmala, Markku; Hansel, Armin (2018)
    alpha-Pinene (C10H16) represents one of the most important biogenic emissions in the atmosphere. Its oxidation products can significantly contribute to the secondary organic aerosol (SOA) formation. Here, we report on the formation mechanism of C-19 and C-20 accretion products from alpha-pinene oxidation, which are believed to be efficient SOA precursors. Measurements have been performed in a free-jet flow system. Detection of RO2 radicals and accretion products was carried out by recent mass spectrometric techniques using different ionization schemes. Observed C-10-RO2 radicals from alpha-pinene ozonolysis were O,O-C10H15(O-2)(x)O-2 with x = 0, 1, 2, 3 and from the OH radical reaction HO-C10H16(O-2)(alpha)O-2 with alpha = 0, 1, 2. All detected C 20 accretion products can be explained via the accretion reaction RO2 + R'O-2 -> ROOR' + O-2 starting from the measured C-10-RO2 radicals. We speculate that C-19 accretion products are formed in an analogous way assuming CH2O elimination. Addition of isoprene (C5H8), producing C-5-RO2 radicals, leads to C-15 accretion products formed via cross-reactions with C-10-RO2 radicals. This process is competing with the formation of C-19/C-20 products from the pure alpha-pinene oxidation. A similar behavior has been observed for ethylene additives that form C-12 accretion products. In the atmosphere, a complex accretion product spectrum from self- and cross-reactions of available RO2 radicals can be expected. Modeling atmospheric conditions revealed that C-19/C-20 product formation is only reduced by a factor of 1.2 or 3.6 in isoprene-dominated environments assuming a 2- or 15-fold isoprene concentration over alpha-pinene, respectively, as present in different forested areas.
  • Berndt, Torsten; Scholz, Wiebke; Mentler, Bernhard; Fischer, Lukas; Herrmann, Hartmut; Kulmala, Markku; Hansel, Armin (2018)
    Hydrocarbons are emitted into the Earth's atmosphere in very large quantities by human and biogenic activities. Their atmospheric oxidation processes almost exclusively yield RO2 radicals as reactive intermediates whose atmospheric fate is not yet fully unraveled. Herein, we show that gas-phase reactions of two RO2 radicals produce accretion products composed of the carbon backbone of both reactants. The rates for accretion product formation are very high for RO2 radicals bearing functional groups, competing with those of the corresponding reactions with NO and HO2. This pathway, which has not yet been considered in the modelling of atmospheric processes, can be important, or even dominant, for the fate of RO2 radicals in all areas of the atmosphere. Moreover, the vapor pressure of the formed accretion products can be remarkably low, characterizing them as an effective source for the secondary organic aerosol.
  • Kurten, Theo; Tiusanen, Kirsi; Roldin, Pontus; Rissanen, Matti; Luy, Jan-Niclas; Boy, Michael; Ehn, Mikael; Donahue, Neil (2016)
    COSMO-RS (conductor-like screening model for real solvents) and three different group-contribution methods were used to compute saturation (subcooled) liquid vapor pressures for 16 possible products of ozone-initiated alpha-pinene autoxidation, with elemental compositions C10H16O4-10 and C20H30O10-12. The saturation vapor pressures predicted by the different methods varied widely. COSMO-RS predicted relatively high saturation vapor pressures values in the range of 10(-6) to 10(-10) bar for the C10H16O4-10 "monomers", and 10(-11) to 10(-16) bar for the C20H30O10-12 "dimers". The group-contribution methods predicted significantly (up to 8 order of magnitude) lower saturation vapor pressures for most of the more highly oxidized monomers. For the differs, the COSMO-RS predictions were within the (wide) range spanned by the three group-contribution methods. The main reason for the discrepancies between the methods is likely that the group-contribution methods do not contain the necessary parameters to accurately treat autoxidation products containing multiple hydroperoxide, peroxy acid or peroxide functional groups, which form intramolecular hydrogen bonds with each other. While the COSMO-RS saturation vapor pressures for these systems may be overestimated, the results strongly indicate that despite their high O:C ratios, the volatilities of the autoxidation products of alpha-pinene (and possibly other atmospherically relevant alkenes) are not necessarily extremely low. In other words, while autoxidation products are able to, adsorb onto aerosol particles, their evaporation back into the gas phase cannot be assumed to be negligible, especially from the smallest nanometer-scale particles. Their observed effective contribution to aerosol particle growth may therefore involve rapid heterogeneous reactions (reactive uptake) rather than effectively irreversible physical absorption.
  • Massoli, Paola; Stark, Harald; Canagaratna, Manjula R.; Krechmer, Jordan E.; Xu, Lu; Ng, Nga L.; Mauldin, Roy L.; Yan, Chao; Kimmel, Joel; Misztal, Pawel K.; Jimenez, Jose L.; Jayne, John T.; Worsnop, Douglas R. (2018)
    We present measurements of highly oxidized multifunctional molecules (HOMs) detected in the gas phase using a high-resolution time-of flight chemical ionization mass spectrometer with nitrate reagent ion (NO3- CIMS). The measurements took place during the 2013 Southern Oxidant and Aerosol Study (SOAS 2013) at a forest site in Alabama, where emissions were dominated by biogenic volatile organic compounds (BVOCs). Primary BVOC emissions were represented by isoprene mixed with various terpenes, making it a unique sampling location compared to previous NO3- CIMS deployments in monoterpene-dominated environments. During SOAS 2013, the NO3- CIMS detected HOMs with oxygen-to-carbon (O:C) ratios between 0.5 and 1.4 originating from both isoprene (C-5) and monoterpenes (C-10) as well as hundreds of additional HOMs with carbon numbers between C-3 and C-20. We used positive matrix factorization (PMF) to deconvolve the complex data set and extract information about classes of HOMs with similar temporal trends. This analysis revealed three isoprene-dominated and three monoterpene-dominated PMF factors. We observed significant amounts of isoprene- and monoterpene-derived organic nitrates (ONs) in most factors. The abundant presence of ONs was consistent with previous studies that have highlighted the importance of NOx-driven chemistry at the site. One of the isoprene-dominated factors had a strong correlation with SO2 plumes likely advected from nearby coal-fired power plants and was dominated by an isoprene derived ON (C5H10N2O8). These results indicate that anthropogenic emissions played a significant role in the formation of low volatility compounds from BVOC emissions in the region.
  • Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; Heitto, Arto; Lutz, Anna; Hallquist, Mattias; D'Ambro, Emma L.; Rissanen, Matti P.; Hao, Liqing; Schobesberger, Siegfried; Kulmala, Markku; Mauldin III, Roy L.; Makkonen, Ulla; Sipilä, Mikko; Petäjä, Tuukka; Thornton, Joel A. (2017)
    We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10(-15) to 10(-6)mu gm(-3) (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10(-3) to 10(-2)mu gm(-3) (similar to 10(6)-10(7)moleculescm(-3)) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of similar to 5% to early stage particle growth from the similar to 60 gaseous dimer compounds. Plain Language Summary Atmospheric aerosol particles influence climate and air quality. We present new insights into how emissions of volatile organic compounds from trees are transformed in the atmosphere to contribute to the formation and growth of aerosol particles. We detected for the first time over a forest, a group of organic molecules, known to grow particles, in the gas phase at levels far higher than expected. Previous measurements had only measured them in the particles. This finding provides guidance on how models of aerosol formation and growth should describe their appearance and fate in the atmosphere.
  • Xie, Hong-Bin; Elm, Jonas; Halonen, Roope; Myllys, Nanna; Kurten, Theo; Kulmala, Markku; Vehkamäki, Hanna (2017)
    Monoethanolamine (MEA), a potential atmospheric pollutant from the capture unit of a leading CO2 capture technology, could be removed by participating H2SO4-based new particle formation (NPF) as simple amines. Here we evaluated the enhancing potential of MEA on H2SO4-based NPF by examining the formation of molecular clusters of MEA and H2SO4 using combined quantum chemistry calculations and kinetics modeling. The results indicate that MEA at the parts per trillion (ppt) level can enhance H2SO4-based NPF. The enhancing potential of MEA is less than that of dimethylamine (DMA), one of the strongest enhancing agents, and much greater than methylamine (MA), in contrast to the order suggested solely by their basicity (MEA <MA <DMA). The unexpectedly high enhancing potential is attributed to the role of -OH of MEA in increasing cluster binding free energies by acting as both a hydrogen bond donor and acceptor. After the initial formation of one H2SO4 and one MEA cluster, the cluster growth mainly proceeds by first adding one H2SO4, and then one MEA, which differs from growth pathways in H2SO4-DMA and H2SO4-MA systems. Importantly, the effective removal rate of MEA due to participation in NPF is comparable to that of oxidation by hydroxyl radicals at 278.15 K, indicating NPF as an important sink for MEA.
  • Kerminen, Veli-Matti; Chen, Xuemeng; Vakkari, Ville; Petäjä, Tuukka; Kulmala, Markku; Bianchi, Federico (2018)
    This review focuses on the observed characteristics of atmospheric new particle formation (NPF) in different environments of the global troposphere. After a short introduction, we will present a theoretical background that discusses the methods used to analyze measurement data on atmospheric NPF and the associated terminology. We will update on our current understanding of regional NPF, i.e. NPF taking simultaneously place over large spatial scales, and complement that with a full review on reported NPF and growth rates during regional NPF events. We will shortly review atmospheric NPF taking place at sub-regional scales. Since the growth of newly-formed particles into larger sizes is of great current interest, we will briefly discuss our observation-based understanding on which gaseous compounds contribute to the growth of newly-formed particles, and what implications this will have on atmospheric cloud condensation nuclei formation. We will finish the review with a summary of our main findings and future outlook that outlines the remaining research questions and needs for additional measurements.
  • Kalivitis, N.; Kerminen, Veli-Matti; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, Hanna; Petäjä, Tuukka; Kulmala, Markku; Mihalopoulos, N. (2015)
    While cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (the value of kappa was lower by 0.2-0.4 for 60 nm particles compared with 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in the afternoon, which was very likely due to the higher sulfate-to-organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneous with the formation of new particles during daytime, particles formed during the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range-transported particles.
  • Joutsensaari, Jorma; Yli-Pirilä, Pasi; Korhonen, Hannele; Arola, Antti; Blande, James D.; Heijari, Juha; Kivimäenpää, Minna; Mikkonen, S.; Hao, Liging; Miettinen, Pasi; Lyytikainen-Saarenmaa, Päivi; Faiola, C. L.; Laaksonen, Ari; Holopainen, Jarmo K. (2015)
    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus, affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.
  • Toivola, Martta; Prisle, Nonne L.; Elm, Jonas; Waxman, Eleanor M.; Volkamer, Rainer; Kurten, Theo (2017)
    We have used COSMO-RS, a method combining quantum chemistry with statistical thermodynamics, to compute Setschenow constants (K-S) for a large array of organic solutes and salts. These comprise both atmospherically relevant solute-salt combinations, as well as systems for which experimental data are available. In agreement with previous studies on single salts, the Setschenow constants predicted by COSMO-RS (as implemented in the COSMOTherm program) are generally too large compared to experiments. COSMOTherm overpredicts salting out (positive K-S), and/or underpredicts salting in (negative K-S). For ammonium and sodium salts, K-S values are larger for oxalates and sulfates, and smaller for chlorides and bromides. For chloride and bromide salts, K-S values usually increase with decreasing size of the cation, along the series Pr4N+ <Et4N+ <Me4N+
  • Gordon, Hamish; Kirkby, Jasper; Baltensperger, Urs; Bianchi, Federico; Breitenlechner, Martin; Curtius, Joachim; Dias, Antonio; Dommen, Josef; Donahue, Neil M.; Dunne, Eimear M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Frege, Carla; Fuchs, Claudia; Hansel, Armin; Hoyle, Christopher R.; Kulmala, Markku; Kurten, Andreas; Lehtipalo, Katrianne; Makhmutov, Vladimir; Molteni, Ugo; Rissanen, Matti P.; Stozkhov, Yuri; Trostl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Robert; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Yan, Chao; Carslaw, Ken S. (2017)
    New particle formation has been estimated to produce around half of cloud-forming particles in the present-day atmosphere, via gas-to-particle conversion. Here we assess the importance of new particle formation (NPF) for both the present-day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45-84%) and 54% in the present day (estimated uncertainty range 38-66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low-cloud-level CCN concentrations at 0.2% supersaturation by 26% in the present-day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion-induced NPF, compared with 27% in the present day, although we caution that the ion-induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions. Plain Language Summary New particle formation in the atmosphere is the process by which gas molecules collide and stick together to form atmospheric aerosol particles. Aerosols act as seeds for cloud droplets, so the concentration of aerosols in the atmosphere affects the properties of clouds. It is important to understand how aerosols affect clouds because they reflect a lot of incoming solar radiation away from Earth's surface, so changes in cloud properties can affect the climate. Before the Industrial Revolution, aerosol concentrations were significantly lower than they are today. In this article, we show using global model simulations that new particle formation was a more important mechanism for aerosol production than it is now. We also study the importance of gases emitted by vegetation, and of atmospheric ions made by radon gas or cosmic rays, in preindustrial aerosol formation. We find that the contribution of ions and vegetation to new particle formation was also greater in the preindustrial period than it is today. However, the effect on particle formation of variations in ion concentration due to changes in the intensity of cosmic rays reaching Earth was small.
  • Saarikoski, S.; Reyes, F.; Vázquez, Y.; Tagle, M.; Timonen, H.; Aurela, M.; Carbone, S.; Worsnop, D.R.; Hillamo, R.; Oyola, P. (2019)
    Chemical characteristics and the sources of submicron particles (<1 mu m in diameter) were investigated in Valle Alegre, the coastal area of Central Chile. The chemical composition of particles was studied by using a Soot particle Aerosol Mass Spectrometer and Multi-Angle Absorption Photometer. Submicron particles were dominated by organics (42% of mass) and sulfate (39% of mass) while the mass fractions of ammonium, nitrate and black carbon were much smaller (13, 2 and 4% of mass, respectively). Additionally, several metals (V, Zn, Fe, Cd, Cu, K, Na and Mg) were detected in submicron particles and also some of their inorganic salts (e.g. NaCl+, MgCl2+, CaCl2+, KCl+ and KNO3+). The sources of particles were examined by using Positive Matrix Factorization (PMF). Organic aerosol (OA) was divided into five factors by using PMF; hydrocarbon-like OA (HOA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semi-volatile OA (SV-OOA) and marine oxygenated OOA (MOOA), Oxygenated factors (LV-OOA; SV-OOA and MOOA) comprised 75% of total OA with LV-OOA being the dominant factor (38% of OA). Sulfate had two major sources in Valle Alegre; similar to 70% of sulfate was related to anthropogenic sources through the oxidation of gas phase SO2 whereas similar to 24% of sulfate was associated with biogenic origin related to the oxidation of dimethyl sulfide in the marine environment. Regarding total submicron particle mass (campaign-average 9.5 mu g m(-3)), the contribution of anthropogenic sources was at least as large as that of biogenic origin.
  • Duporte, Geoffroy; Riva, Matthieu; Parshintsev, Jevgeni; Heikkinen, Enna; Barreira, Luis M. F.; Myllys, Nanna; Heikkinen, Liine; Hartonen, Kari; Kulmala, Markku; Ehn, Mikael; Riekkola, Marja-Liisa (2017)
    Amines are recognized as key compounds in new particle formation (NPF) and secondary organic aerosol (SOA) formation. In addition, ozonolysis of a-pinene contributes substantially to the formation of biogenic SOAs in the atmosphere. In the present study, ozonolysis of a-pinene in the presence of dimethylamine (DMA) was investigated in a flow tube reactor. Effects of amines on SOA formation and chemical composition were examined. Enhancement of NPF and SOA formation was observed in the presence of DMA. Chemical characterization of gas and particle-phase products by high-resolution mass spectrometric techniques revealed the formation of nitrogen containing compounds. Reactions between ozonolysis reaction products of a-pinene, such as pinonaldehyde or pinonic acid, and DMA were observed. Possible reaction pathways are suggested for the formation of the reaction products. Some of the compounds identified in the laboratory study were also observed in aerosol samples (PM1) collected at the SMEAR II station (Hyytiala, Finland) suggesting that DMA might affect the ozonolysis of a-pinene in ambient conditions.
  • von Schneidemesser, Erika; Monks, Paul S.; Allan, James D.; Bruhwiler, Lori; Forster, Piers; Fowler, David; Lauer, Axel; Morgan, William T.; Paasonen, Pauli; Righi, Mattia; Sindelarova, Katerina; Sutton, Mark A. (2015)
  • Paasonen, Pauli; Peltola, Maija; Kontkanen, Jenni; Junninen, Heikki; Kerminen, Veli-Matti; Kulmala, Markku (2018)
    Growth of aerosol particles to sizes at which they can act as cloud condensation nuclei (CCN) is a crucial factor in estimating the current and future impacts of aerosol-cloud-climate interactions. Growth rates (GRs) are typically determined for particles with diameters (d(P)) smaller than 40 nm immediately after a regional new particle formation (NPF) event. These growth rates are often taken as representatives for the particle growth to CCN sizes (d(P) > 50-100 nm). In modelling frameworks, the concentration of the condensable vapours causing the growth is typically calculated with steady state assumptions, where the condensation sink (CS) is the only loss term for the vapours. Additionally, the growth to CCN sizes is represented with the condensation of extremely low-volatility vapours and gas-particle partitioning of semi-volatile vapours. Here, we use a novel automatic method to determine growth rates from below 10 nm to hundreds of nanometres from a 20-year-long particle size distribution (PSD) data set in boreal forest. With this method, we are able to detect growth rates also at times other than immediately after a NPF event. We show that the GR increases with an increasing oxidation rate of monoterpenes, which is closely coupled with the ambient temperature. Based on our analysis, the oxidation reactions of monoterpenes with ozone, hydroxyl radical and nitrate radical all are capable of producing vapours that contribute to the particle growth in the studied size ranges. We find that GR increases with particle diameter, resulting in up to 3-fold increases in GRs for particles with d(P) similar to 100 nm in comparison to those with d(P) similar to 10 nm. We use a single particle model to show that this increase in GR can be explained with aerosol-phase reactions, in which semi-volatile vapours form non-volatile dimers. Finally, our analysis reveals that the GR of particles with d(P) <100 nm is not limited by the condensation sink, even though the GR of larger particles is. Our findings suggest that in the boreal continental environment, the formation of CCN from NPF or sub-100 nm emissions is more effective than previously thought and that the formation of CCN is not as strongly self-limiting a process as the previous estimates have suggested.
  • Huang, Xin; Zhou, Luxi; Ding, Aijun; Qi, Ximeng; Nie, Wei; Wang, Minghuai; Chi, Xuguang; Petäjä, Tuukka; Kerminen, Veli-Matti; Roldin, Pontus; Rusanen, Anton; Kulmala, Markku; Boy, Michael (2016)
    New particle formation (NPF) has been investigated intensively during the last 2 decades because of its influence on aerosol population and the possible contribution to cloud condensation nuclei. However, intensive measurements and modelling activities on this topic in urban metropolitan areas in China with frequent high-pollution episodes are still very limited. This study provides results from a comprehensive modelling study on the occurrence of NPF events in the western part of the Yangtze River Delta (YRD) region, China. The comprehensive modelling system, which combines the WRF-Chem (the Weather Research and Forecasting model coupled with Chemistry) regional chemical transport model and the MALTE-BOX sectional box model (the model to predict new aerosol formation in the lower troposphere), was shown to be capable of simulating atmospheric nucleation and subsequent growth. Here we present a detailed discussion of three typical NPF days, during which the measured air masses were notably influenced by either anthropogenic activities, biogenic emissions, or mixed ocean and continental sources. Overall, simulated NPF events were generally in good agreement with the corresponding measurements, enabling us to get further insights into NPF processes in the YRD region. Based on the simulations, we conclude that biogenic organic compounds, particularly monoterpenes, play an essential role in the initial condensational growth of newly formed clusters through their low-volatility oxidation products. Although some uncertain-ties remain in this modelling system, this method provides a possibility to better understand particle formation and growth processes.
  • Iyer, Siddharth; He, Xucheng; Hyttinen, Noora; Kurten, Theo; Rissanen, Matti P. (2017)
    The HO2 radical is an important atmospheric molecule that can potentially influence the termination of autoxidation processes of volatile organic compounds (VOCs) that lead to the formation of highly oxygenated multifunctional compounds (HOMs). In this work, we demonstrate the direct detection of the HO2 radical using an iodide-based chemical ionization mass spectrometer (iodide-CIMS). Expanding on the previously established correlation between molecule-iodide binding enthalpy and iodide-CIMS instrument sensitivity, the experimental detection of the HO2 radical was preceded by the quantum chemical calculation of the HO2*I- cluster (PBE/aug-cc-pVTZ-PP level), which showed a reasonably strong binding enthalpy of 21.60 kcal/mol. Cyclohexene ozonolysis intermediates and closed-shell products were next detected by the iodide-CIMS. The ozone-initiated cyclohexene oxidation mechanism was perturbed by the introduction of the HO2 radical, leading to the formation of closed-shell hydroperoxides. The experimental investigation once again followed the initial computational molecule-iodide binding enthalpy calculations. The quantum chemical calculations were performed at the PBE/aug-cc-pVTZ-PP level for radicals and DLPNO-CCSD(T)/def2-QZVPP//PBE/aug-cc-pVTZ-PP level for the closed-shell products. A comparison between the iodide-CIMS and nitrate-CIMS spectra with identical measurement steps revealed that the iodide-CIMS was able to detect the low-oxidized (O/C ratio 0.5 and 0.66) cyclohexene ozonolysis monomer products more efficiently than nitrate-CIMS. Higher-oxidized monomers (O/C ratio 1 to 1.5) were detected equally well by both methods. An investigation of dimers showed that both iodide- and nitrate-CIMS were able to detect the dimer compositions possibly formed from reactions between the peroxy radical monomers considered in this study. Additionally, iodide-CIMS detected organic ions that were formed by a previously suggested mechanism of dehydroxylation of peroxy acids (and deoxygenation of acyl peroxy radicals) by H2O*I- clusters. These mechanisms were computationally verified.
  • Hyttinen, Noora; Rissanen, Matti P.; Kurten, Theo (2017)
    During the past few years nitrate chemical ionization has been used to detect highly oxidized products from OH-and O-3-initiated alkene autoxidation. These have been speculated to play a significant role in atmospheric aerosol formation. As less oxidized autoxidation products have not been detected using nitrate chemical ionization, and the absolute concentrations of the highly oxidized species are as yet unknown, other reagent ions, such as acetate, are needed both to verify the detection efficiency of nitrate chemical ionization and to measure the less oxidized compounds. Here we compare the formation free energies of the acetate and nitrate clusters of several atmospherically relevant RO2 intermediates and products derived from cyclohexene ozonolysis, calculated at the omega B97xD/aug-cc-pVTZ level of theory. We found that, for the molecules with one hydrogen bonding peroxy acid group, the binding with nitrate is on average 7.5 kcal/mol weaker than with acetate and the binding is on average 10.5 kcal/mol weaker for molecules with two hydrogen bonding peroxy acid groups. We also calculated the deprotonation energies of the RO2 intermediates and the closed-shell products and found that acetate is able to deprotonate almost all of these molecules, while deprotonation with nitrate is (as expected for the conjugate base of a strong acid) not favorable.
  • Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William (2017)
    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O-3) is photolyzed at 254 nm to produce O(D-1) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O-3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(D-1) + N2O -> 2NO, followed by the reaction NO + O-3 -> NO2 + O-2. Laboratory measurements coupled with photochemical model simulations suggest that O(D-1) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and alpha-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.
  • Praplan, A. P.; Schobesberger, S.; Bianchi, F.; Rissanen, M. P.; Ehn, M.; Jokinen, Tuija; Junninen, H.; Adamov, A.; Amorim, A.; Dommen, J.; Duplissy, J.; Hakala, J.; Hansel, A.; Heinritzi, M.; Kangasluoma, J.; Kirkby, J.; Krapf, M.; Kürten, A.; Lehtipalo, K.; Riccobono, F.; Rondo, L.; Sarnela, N.; Simon, M.; Tome, A.; Tröstl, J.; Winkler, P. M.; Williamson, C.; Ye, P.; Curtius, J.; Baltensperger, U.; Donahue, N. M.; Kulmala, Markku; Worsnop, D. R. (2015)
    This study presents the difference between oxidised organic compounds formed by alpha-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate). Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition of oxidation products and their clustering behaviour, several instruments must be used. We compare oxidation products containing 10 and 20 carbon atoms and show that highly oxidised organic compounds are formed in the early stages of the oxidation.