Browsing by Subject "SEDIMENTS"

Sort by: Order: Results:

Now showing items 1-20 of 33
  • Scopetani, Costanza; Chelazzi, David; Cincinelli, Alessandra; Esterhuizen-Londt, Maranda (2019)
    In the last few years, several studies have investigated microplastics (MPs) in marine ecosystems, but data monitoring and assessing the occurrence in freshwater environments are still scarce. The present study aims to investigate the occurrence, distribution, and chemical composition of MP pollution in Vesijärvi lake and Pikku Vesijärvi pond close to the city of Lahti (Finland) in winter. Sediment, snow, and ice core samples were collected near the shore of these two aquatic systems. MPs were analysed and identified by a non-destructive method using Fourier transform infrared spectroscopy (FTIR) 2D imaging. The mean concentrations of MPs detected in sediment, snow, and ice samples were 395.5 ± 90.7 MPs/kg, 117.1 ± 18.4 MPs/L, and 7.8 ± 1.2 MPs/L, respectively. FTIR results showed the predominant abundance of microplastics, such as polyamides (up to 53.3%), polyethylene and polypropylene (up to 17.1%), and natural fragments such as cellulose (up to 45.8%) and wool (up 18.8%) in the same size range. The potential release of MPs arising from stormwaters and sport and recreational activities was evidenced.
  • Kinnunen, Niko; Laurén, Annamari (Ari); Pumpanen, Jukka; Nieminen, Tiina M.; Palviainen, Marjo (2021)
    A 96-h laboratory experiment was conducted to assess the potential of biochar as a water protection tool for acid sulfate soil runoff. Acid sulfate soils pose a risk to water bodies due to acid, metal-rich runoff, especially in drained peatland forests. New water protection methods, such as adsorption with biochar, are needed. We investigated the capability of spruce and birch biochar to adsorb metals and reduce acidity in the water. Water from an acid sulfate site was stirred with biochar, biochar with lime, and biochar with ash. We determined water Al, S, Fe, Cu, Co, Cd, Ni, and Zn concentrations periodically, as well as pH and total organic carbon at the beginning and the end of the experiment. The studied substances are considered the most abundant and environmentally harmful elements in the acid sulfate soils in Finland. Biochar surface characteristics were analyzed with FTIR spectroscopy. Concentration changes were used to parametrize adsorption kinetics models. Biochar adsorbed metals and increased pH, but lime and ash additives did not always improve the adsorption. Spruce biochar and ash addition had generally higher adsorption than birch biochar and lime addition. The adsorption was dominated by Al and Fe at lower pH, while increasing pH improved the adsorption of Cd and Zn. The results show that biochar can increase the water pH, as well as adsorb Al, Fe, Co, Cd, Ni, and Zn. Further work could include an actual-scale biochar reactor in a laboratory and field conditions.
  • Saarela, Taija; Rissanen, Antti J.; Ojala, Anne; Pumpanen, Jukka; Aalto, Sanni L.; Tiirola, Marja; Vesala, Timo; Jantti, Helena (2020)
    Freshwater ecosystems represent a significant natural source of methane (CH4). CH4 produced through anaerobic decomposition of organic matter (OM) in lake sediment and water column can be either oxidized to carbon dioxide (CO2) by methanotrophic microbes or emitted to the atmosphere. While the role of CH4 oxidation as a CH4 sink is widely accepted, neither the magnitude nor the drivers behind CH4 oxidation are well constrained. In this study, we aimed to gain more specific insight into CH4 oxidation in the water column of a seasonally stratified, typical boreal lake, particularly under hypoxic conditions. We used (CH4)-C-13 incubations to determine the active CH4 oxidation sites and the potential CH4 oxidation rates in the water column, and we measured environmental variables that could explain CH4 oxidation in the water column. During hypolimnetic hypoxia, 91% of available CH4 was oxidized in the active CH4 oxidation zone, where the potential CH4 oxidation rates gradually increased from the oxycline to the hypolimnion. Our results showed that in warm springs, which become more frequent, early thermal stratification with cold well-oxygenated hypolimnion delays the period of hypolimnetic hypoxia and limits CH4 production. Thus, the delayed development of hypolimnetic hypoxia may partially counteract the expected increase in the lacustrine CH4 emissions caused by the increasing organic carbon load from forested catchments.
  • Maximov, Alexey; Bonsdorff, Erik; Eremina, Tatjana; Kauppi, Laura; Norkko, Alf; Norkko, Joanna (2015)
    Marenzelleria spp. are among the most successful non-native benthic species in the Baltic Sea. These burrowing polychaetes dig deeper than most native Baltic species, performing previously lacking ecosystem functions. We examine evidence from experiments, field sampling and modelling that the introduction of Marenzelleria spp. affects nutrient cycling and biogeochemical processes at the sediment water interface. Over longer time scales, bioirrigation by Marenzelleria spp. has the potential to increase phosphorus retention in bottom deposits because of deeper oxygen penetration into sediments and formation of a deeper oxidized layer. In contrast, nitrogen fluxes from the sediment increase. As a consequence of a decline of the phosphate concentration and/or rising nitrogen/phosphorus ratio, some Northern Baltic ecosystems may experience improvement of the environment because of mitigation of eutrophication and harmful cyanobacteria blooms. Although it is difficult to unambiguously estimate the ecosystem-level consequences of invasion, in many cases it could be considered as positive due to increased structural and functional diversity. The long-term interactions with the native fauna still remain unknown, however, and in this paper we highlight the major knowledge gaps. (C) 2015 Institute of Oceanology of the Polish Academy of Sciences., Production and hosting by Elsevier Sp. z o.o.
  • Luoto, Tomi P.; Ojala, Antti E.K. (2018)
    Arctic freshwater basins are diversity hotspots and sentinels of climate change, but their long-term variability and the environmental variables controlling them are not well defined. We examined four available lake sediment sequences from High Arctic Svalbard for their subfossil Chironomidae communities, biodiversity and functional traits and assessed the influence of climatic and limnological variability on the long-term ecological dynamics. Our results indicated that collector-filterers had an important role in the oligotrophic sites, whereas collector-gatherers dominated the nutrient-enriched sites with significant bird guano inputs. In the oligotrophic sites, benthic production, taxon richness and taxonomic and functional diversity were highest during the early Holocene, when temperatures showed a rapid increase. An increase in subfossil abundance and diversity metrics was also found in recent samples of the oligotrophic sites, but not in the bird-impacted sites, where the trends were decreasing. When partitioning out the environmental forcing on chironomid communities, the influence of climate was significant in all the sites, whereas in-lake production (organic matter) was significant in two of the sites and catchment erosion (magnetic susceptibility) had only minor influence. The findings suggest that major changes in Arctic chironomid assemblages were driven by climate warming with increasing diversity in oligotrophic sites, but deteriorating ecological functions in environmentally stressed sites. We found that although taxonomic and functional diversity were always coupled, taxonomical and functional turnovers were coupled only in the oligotrophic sites suggesting that the ecological functions operated by chironomids in these low-productivity sites may not be as resilient to future environmental change.
  • Gammal, Johanna; Hewitt, Judi; Norkko, Joanna; Norkko, Alf; Thrush, Simon (2020)
    The biodiversity crisis has increased interest in understanding the role of biodiversity for ecosystem functioning. Functional traits are often used to infer ecosystem functions to increase our understanding of these relationships over larger spatial scales. The links between specific traits and ecosystem functioning are, however, not always well established. We investigated how the choice of analyzing either individual species, selected modalities, or trait combinations affected the spatial patterns observed on a sandflat and how this was related to the natural variability in ecosystem functioning. A large dataset of 400 benthic macrofauna samples was used to explore distribution patterns. We hypothesized that (1) if multiple species (redundancy) represent a trait combination or a modality their spatial patterns would be smoothed out, and (2) the lost spatial variability within a trait combination or modality, due to the smoothing effect, would potentially affect their utility for predicting ecosystem functioning (tested on a dataset of 24 samples). We predicted that species would show heterogeneous small spatial patterns, while modalities and trait combinations would show larger and more homogeneous patterns because they would represent a collection of many distributions. If modalities and trait combinations are better predictors of ecosystem functioning than species, then the smoother spatial patterns of modalities and trait combinations would result in a more homogeneous landscape of ecosystem function and the number of species exhibiting specific traits would provide functional redundancy. Our results showed some smoothing of spatial patterns progressing from species through modalities to trait combinations, but generally spatial patterns reflected a few dominant key species. Moreover, some individual modalities and species explained more or equal proportions of the variance in the ecosystem functioning than the combined traits. The findings thus suggest that only some spatial variability is lost when species are combined into modalities and trait combinations and that a homogeneous landscape of ecosystem function is not likely.
  • Rodil, I. F.; Attard, K. M.; Norkko, J.; Glud, R. N.; Norkko, A. (2020)
    A central goal of benthic ecology is to describe the pathways and quantities of energy and material flow in seafloor communities over different spatial and temporal scales. We examined the relative macrobenthic contribution to the seafloor metabolism by estimating respiration and secondary production based on seasonal measurements of macrofauna biomass across key coastal habitats of the Baltic Sea archipelago. Then, we compared the macrofauna estimates with estimates of overall seafloor gross primary production and respiration obtained from the same habitats using the aquatic eddy covariance technique. Estimates of macrobenthic respiration rates suggest habitat-specific macrofauna contribution (%) to the overall seafloor respiration ranked as follows: blue mussel reef (44.5) > seagrass meadow (25.6) > mixed meadow (24.1) > bare sand (17.8) > Fucus-bed (11.1). In terms of secondary production (g C m−2 y−1), our estimates suggest ranking of habitat value as follows: blue mussel reef (493.4) > seagrass meadow (278.5) > Fucus-bed (102.2) > mixed meadow (94.2) > bare sand (52.1). Our results suggest that approximately 12 and 10% of the overall soft-sediment metabolism translated into macrofauna respiration and secondary production, respectively. The hard-bottoms exemplified two end-points of the coastal metabolism, with the Fucus-bed as a high producer and active exporter of organic C (that is, net autotrophy), and the mussel reef as a high consumer and active recycler of organic C (that is, net heterotrophy). Using a combination of metrics of ecosystem functioning, such as respiration rates and secondary production, in combination with direct habitat-scale measurements of O2 fluxes, our study provides a quantitative assessment of the role of macrofauna for ecosystem functioning across heterogeneous coastal seascapes.
  • Vanninen, Paula; Östin, Anders; Beldowski, Jacek; Pedersen, Erik A.; Söderström, Martin; Szubska, Marta; Grabowski, Milosz; Siedlewicz, Grzegorz; Czub, Michal; Popiel, Stanislaw; Dziedzic, Daniel; Jakacki, Jaromir; Paczek, Bartlomiej; Nawala, Jakub (2020)
    About 50 000 tons of chemical weapons (CW) were dumped to the Baltic Sea after the Second World War. Munitions are located in the deep areas of the Baltic Sea, and there they act as a point source of contamination to the ecosystem. Corroded munitions release chemical warfare agents (CWAs) to nearby water and sediments. In this study we investigated known dumpsites (Bornholm, Gotland and Gdansk Deep) and dispersed chemical munitions, to evaluate the extent of contamination of nearby sediments, as well as to assess the degradation process of released CWA. It was found that CWA-related phenylarsenic chemicals (Clark I, Clark II and Adamsite) and sulfur mustard are released to the sediments and undergo environmental degradation to chemicals, of which some remain toxic. The extent of pollution of released CWAs and their corresponding degradation products reaches more than 250 m from the CW objects, and seem to follow a power curve decrease of concentration from the source. Bornholm Deep is characterised with the highest concentration of CWAs in sediments, but occasional concentration peaks are also observed in the Gdansk Deep and close to dispersed munitions. Detailed investigation of spreading pattern show that the range of pollution depends on bottom currents and topography.
  • Ahmad, Faraaz; Morris, Katherine; Law, Gareth T.W.; Taylor, Kevin G.; Shaw, Samuel (2021)
    Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, Ra-226 concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1-0.3 Bq g(-1)) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (
  • Muurinen, Johanna; Pasupulate, Avinash; Lappalainen, Juha; Virta, Marko (2019)
    Whole-cell bioreporters are living organisms and thus using them for detecting environmental contaminants would reflect biological effects of these pollutants. However, bioreporters are not widely used in field studies. Many of the bioreporter field protocols are suitable for liquid samples or include pipetting steps, which is a demanding task outside the laboratory. We present a bioreporter protocol without pipetting or sample type requirements. The protocol utilizes polyester swabs, commonly used in cleanroom technology. As an example contaminant, we used tetracycline and generated test samples with known concentrations up to the maximum tetracycline residue limit of milk set by the European Union (EU) regulation. The matrices of the test samples were Milli-Q water, milk and soil. The swabs were first dipped in the bioreporter cell cultures and then to test samples and luminescence was measured after incubation. The standard deviation of measurements from ten replicate swabs was in the same range as commonly in pipetting protocols (4-19%). The test samples with lowest tetracycline concentration (5 ng mL(-1)) were distinguished from the control samples (0 ng mL(-1) tetracycline). Our results show that swabs can be used together with luminescent whole cell bioreporters, making it possible to conduct the measurements in field conditions.
  • Sarala, Pertti; Väliranta, Minna; Eskola, Tiina; Vaikutiene, Giedre (2016)
    Old sedimentological and geochronological records can be preserved underneath the central parts of the continental ice sheets under non-erosive, cold-based subglacial conditions. Organic deposits that predate the last deglaciation are of particular value for the information held on glacial-time climate and environmental conditions. In this study, we present multiproxy data derived from a well-preserved MIS 3 interstadial (55-25 ka ago) organic layer from inside the Arctic Circle in the Finnish Lapland. Biological proxy evidence, namely coming from aquatic plant species, indicates July temperatures as high as 14.4 degrees C, i.e. higher than those of today for the study site. Macrofossil evidence demonstrates for the first time the presence of pines accompanied by tree birch during the MIS 3 interstadial in northern Fennoscandia. These results concur with contemporary insolation model outcomes but contradict with the previous proxy-based view of open tundra conditions during the MIS 3. The data suggest that there are highly dynamic interstadial continental ice-sheet dynamics following changes in orbital forcing. Warm climate enabled the establishment of forests on exposed landscape. Moreover, we suggest that in the light of these new data, previous MIS 3 pollen data could be re-interpreted.
  • Salminen, Sarianna; Tammelin, Mira; Jilbert, Tom; Fukumoto, Yu; Saarni, Saija (2021)
    The influence of lake restoration efforts on lake bottom-water conditions and varve preservation is not well known. We studied varved sediments deposited during the last 80 years along a water-depth transect in the Enonsaari Deep, a deep-water area of the southernmost Enonselka Basin, Lake Vesijarvi, southern Finland. For the last few decades, the Enonselka Basin has been subject to ongoing restoration efforts. Varve, elemental, and diatom analyses were undertaken to explore how these actions and other human activities affected varve preservation in the Enonsaari Deep. In contrast to most varved Finnish lakes, whose water columns have a natural tendency to stratify, and possess varve records that span thousands of years, varve formation and preservation in Lake Vesijarvi was triggered by relatively recent anthropogenic stressors. The multi-core varve analysis revealed that sediment in the Enonsaari Deep was initially non-varved, but became fully varved in the late 1930s, a time of increasing anthropogenic influence on the lake. The largest spatial extent of varves occurred in the 1970s, which was followed by a period of less distinguishable varves, which coincided with diversion of sewage from the lake. Varve preservation weakened during subsequent decades and was terminated completely by lake aeration in the 2010s. Despite improvements in water quality, hypolimnetic oxygen depletion and varve preservation persisted beyond the reduction in sewage loading, initial aeration, and biomanipulation. These restoration efforts, however, along with other human actions such as harbor construction and dredging, did influence varve characteristics. Varves were also influenced by diatom responses to anthropogenic forcing, because diatoms form a substantial part of the varve structure. Of all the restoration efforts, a second episode of aeration seems to have had the single most dramatic impact on profundal conditions in the basin, resulting in replacement of a sediment accumulation zone by a transport or erosional zone in the Enonsaari Deep. We conclude that human activities in a lake and its catchment can alter lake hypolimnetic conditions, leading to shifts in lake bottom dynamics and changes in varve preservation.
  • Gu Yunfu; Wang, Yingyan; Xiang, Quanju; Yu, Xiumei; Zhao, Ke; Zhang, Xiaoping; Lindstrom, Kristina; Hu Yufu; Liu, Songqing (2017)
    Alpine wetland in the Zoige Plateau has suffered from serious degradation during"the last 30 years due to global climate change and anthropogenic impact. Denitrification is a key nitrogen removal process which can be performed by different microorganisms, including bacteria harboring ttirS-genes. In this study, a degradation succession was used to study the effect on potential denitrification activity (PDA) and on bacterial communities harboring nirS genes. Based on the determination of the PDA, the abundance, structural diversity, and phylogenetic identity of the soil bacteria with nirS genes were further assessed by qPCR, terminal restriction fragment length polymorphism (T-RFLP), and DNA-sequencing, respectively. The results showed that soil PDA ranged from 8.78 to 52.77 ng N20-N g(-1) dry soil h(-1), being lowest in sandy soil and highest in swamp soil. The abundance of nirS genes (copies g(-1) soil) were also the lowest in the sandy soil while highest in the swamp soil. The average Shannon-Wiener diversity index of the nirS denitrifying bacterial structural ranged from 2.20 in the meadow soil to 3.07 in the swamp soil. Redundancy analysis (RDA) showed that the nirS denitrifying bacterial community correlated with soil water content and available phosphorus, with water content as the major factor in shaping the nirS denitrifying bacterial community. The results of this study suggest that the wetland degradation would decrease soil PDA, and abundance and structural diversity of the denitrifying bacteria with nirS genes. These findings can contribute to support a theoretical foundation for predicting the potential influences of wetland degradation on soil denitrifying bacteria in alpine wetlands. (C) 2017 Elsevier Masson SAS. All rights reserved.
  • Kaitala, Veijo; Koivu-Jolma, Mikko; Laakso, Jouni (2021)
    An infective prey has the potential to infect, kill and consume its predator. Such a prey-predator relationship fundamentally differs from the predator-prey interaction because the prey can directly profit from the predator as a growth resource. Here we present a population dynamics model of partial role reversal in the predator-prey interaction of two species, the bottom dwelling marine deposit feeder sea cucumber Apostichopus japonicus and an important food source for the sea cucumber but potentially infective bacterium Vibrio splendidus. We analyse the effects of different parameters, e.g. infectivity and grazing rate, on the population sizes. We show that relative population sizes of the sea cucumber and V. Splendidus may switch with increasing infectivity. We also show that in the partial role reversal interaction the infective prey may benefit from the presence of the predator such that the population size may exceed the value of the carrying capacity of the prey in the absence of the predator. We also analysed the conditions for species extinction. The extinction of the prey, V. splendidus, may occur when its growth rate is low, or in the absence of infectivity. The extinction of the predator, A. japonicus, may follow if either the infectivity of the prey is high or a moderately infective prey is abundant. We conclude that partial role reversal is an undervalued subject in predator-prey studies.
  • Jilbert, Tom; Gustafsson, Bo G.; Veldhuijzen, Simon; Reed, Daniel C.; Helmond, Niels A. G. M.; Hermans, Martijn; Slomp, Caroline P. (2021)
    Hypoxia has occurred intermittently in the Baltic Sea since the establishment of brackish-water conditions at similar to 8,000 years B.P., principally as recurrent hypoxic events during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA). Sedimentary phosphorus release has been implicated as a key driver of these events, but previous paleoenvironmental reconstructions have lacked the sampling resolution to investigate feedbacks in past iron-phosphorus cycling on short timescales. Here we employ Laser Ablation (LA)-ICP-MS scanning of sediment cores to generate ultra-high resolution geochemical records of past hypoxic events. We show that in-phase multidecadal oscillations in hypoxia intensity and iron-phosphorus cycling occurred throughout these events. Using a box model, we demonstrate that such oscillations were likely driven by instabilities in the dynamics of iron-phosphorus cycling under preindustrial phosphorus loads, and modulated by external climate forcing. Oscillatory behavior could complicate the recovery from hypoxia during future trajectories of external loading reductions.
  • Kivilä, Elissa Henriikka; Luoto, Tomi P.; Rantala, Marttiina V.; Nevalainen, Liisa (2020)
    High latitude freshwater systems are facing changes in catchment-mediated allochthonous input, as well as physical and chemical controls triggered by on-going climate change, which may alter their carbon processing and ecological characteristics. To explore changes in chironomid functional responses and carbon utilization in relation to longterm environmental change, we studied a sediment core covering ca. 2000 years from a tundra lake in northern Finland, which was analysed for sediment geochemistry, isotopic composition of chironomid remains and their functional assemblages. We aimed to relate changes in chironomid functional feeding assemblages and resource utilization, based on Bayesian stable isotope modelling, and determined that the long-term resource utilization was more controlled by sediment geochemistry (resource availability) and climatic variables, reflecting changes in habitat and lake ontogeny, rather than the functional feeding assemblage composition. Change horizons were observed for both sediment geochemistry and functional assemblage composition. However, different timing of these changes suggests different drivers affecting the dynamics of primary production and chironomid community functionality. We also compared the recent warming period to Medieval Climate Anomaly (MCA), observing divergent patterns, which suggests that MCA may not be a good analogue for changes induced by on-going climate warming.
  • Zawiska, Izabela; Dimante-Deimantovica, Inta; Luoto, Tomi P.; Rzodkiewicz, Monika; Saarni, Saija; Stivrins, Normunds; Tylmann, Wojciech; Lanka, Anna; Robeznieks, Martins; Jilbert, Tom (2020)
    Cultural eutrophication, the process by which pollution due to human activity speeds up natural eutrophication, is a widespread and consequential issue. Here, we present the 85-year history of a small, initially Lobelia-Isoetes dominated lake. The lake's ecological deterioration was intensified by water pumping station activities when it received replenishment water for more than 10 years from a eutrophic lake through a pipe. In this study, we performed a paleolimnological assessment to determine how the lake's ecosystem functioning changed over time. A multi-proxy (pollen, Cladocera, diatoms, and Chironomidae) approach was applied alongside a quantitative reconstruction of total phosphorus using diatom and hypolimnetic dissolved oxygen with chironomid-based transfer functions. The results of the biotic proxy were supplemented with a geochemical analysis. The results demonstrated significant changes in the lake community's structure, its sediment composition, and its redox conditions due to increased eutrophication, water level fluctuations, and erosion. The additional nutrient load, particularly phosphorus, increased the abundance of planktonic eutrophic-hypereutrophic diatoms, the lake water's transparency decreased, and hypolimnetic anoxia occurred. Cladocera, Chironomidae, and diatoms species indicated a community shift towards eutrophy, while the low trophy species were suppressed or disappeared.
  • Leppänen, Jaakko; Weckström, Jan; Korhola, Atte (2018)
    Mining is one of the key industries in the world and mine water pollution is a serious threat to aquatic ecosystems. Historical monitoring data on the pollution history and impacts in aquatic ecosystems, however, are rarely available, so paleolimnological methods are required to explore the consequences of past pollution. We studied the history of cladoceran community dynamics in Lake Kirkkojarvi, southern Finland, including the periods before, during and after mining. We analyzed the geochemical composition and cladoceran subfossil remains in a Pb-210-dated sediment core to evaluate the magnitude, rate, and direction of cladoceran community changes through time. The cladoceran community was altered significantly by mining activity that occurred during the mid-twentieth century. During more recent times, however, eutrophication effects have overridden the impacts of mining. After mining ceased, the cladoceran community underwent an abrupt regime shift towards taxa that reflect more eutrophic conditions. This change was caused by intensive farming activity and fertilizer use over the past few decades. The recent history of Lake Kirkkojarvi is a textbook example of a regime shift triggered by multiple human-caused stressors. Our findings also highlight the utility of cladocerans as bio-indicators in pollution research and illustrate the sensitivity of aquatic ecosystems to anthropogenic modification.
  • Kylander, Malin E.; Plikk, Anna; Rydberg, Johan; Löwemark, Ludvig; Salonen, J. Sakari; Fernandez-Fernandez, Maria; Helmens, Karin (2018)
    Biological proxies from the Sokli Eemian (Marine Isotope Stage 5e) paleolake sequence from northeast Finland have previously shown that, unlike many postglacial records from boreal sites, the lake becomes increasingly eutrophic over time. Here, principal components (PC) were extracted from a high resolution multi-element XRF core scanning dataset to describe minerogenic input from the wider catchment (PC1), the input of S, Fe, Mn, and Ca-rich detrital material from the surrounding Sokli Carbonatite Massif (PC2), and chemical weathering (PC3). Minerogenic inputs to the lake were elevated early in the record and during two abrupt cooling events when soils and vegetation in the catchment were poor. Chemical weathering in the catchment generally increased over time, coinciding with higher air temperatures, catchment productivity, and the presence of acidic conifer species. Abiotic edaphic processes play a key role in lake ontogeny at this site stemming from the base cation- and nutrient-rich bedrock, which supports lake alkalinity and productivity. The climate history at this site, and its integrated effects on the lake system, appear to override development processes and alters its long-term trajectory.
  • Suzuki, Satoru; Nakanishi, Sayoko; Tamminen, Manu; Yokokawa, Taichi; Sato-Takabe, Yuki; Ohta, Kohei; Chou, Hsin-Yiu; Muziasari, Windi I.; Virta, Marko (2019)
    The use of antibiotics in aquaculture causes selection pressure for antibiotic-resistant bacteria (ARB). Antibiotic resistance genes (ARGs) may persist in ARB and the environment for long time even after stopping drug administration. Here we show monthly differences in the occurrences of genes conferring resistance to sulfonamides (i.e. sul1, sul2, sul3), and tetracyclines (tet(M)) in Japanese aquaculture seawater accompanied by records of drug administration. sul2 was found to persist throughout the year, whereas the occurrences of sul1, sul3, and tet(M) changed month-to-month. sul3 and tet(M) were detected in natural bacterial assemblages in May and July, but not in colony-forming bacteria, thus suggesting that the sul3 was harbored by the non-culturable fraction of the bacterial community. Comparison of results from Taiwanese, Japanese, and Finnish aquaculture waters reveals that the profile of sul genes and tet(M) in Taiwan resembles that in Japan, but is distinct from that in Finland. To our knowledge, this work represents the first report to use the same method to compare the dynamics of sul genes and tet(M) in aquaculture seawater in different countries. (C) 2019 Elsevier B.V. All rights reserved.