Browsing by Subject "SERUM RESPONSE FACTOR"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Pawlowski, Rafal; Rajakylä, Eeva; Vartiainen, Maria K.; Treisman, Richard (2010)
  • Wei, Gong-Hong; Badis, Gwenael; Berger, Michael F.; Kivioja, Teemu; Palin, Kimmo; Enge, Martin; Bonke, Martin; Jolma, Arttu; Varjosalo, Markku; Gehrke, Andrew R.; Yan, Jian; Talukder, Shaheynoor; Turunen, Mikko; Taipale, Mikko; Stunnenberg, Hendrik G.; Ukkonen, Esko; Hughes, Timothy R.; Bulyk, Martha L.; Taipale, Jussi (2010)
  • Biggs, Leah C.; Kim, Christine S.; Miroshnikova, Yekaterina A.; Wickström, Sara A. (2020)
    Tissue shape emerges from the collective mechanical properties and behavior of individual cells and the ways by which they integrate into the surrounding tissue. Tissue architecture and its dynamic changes subsequently feed back to guide cell behavior. The skin is a dynamic, self-renewing barrier that is subjected to large-scale extrinsic mechanical forces throughout its lifetime. The ability to withstand this constant mechanical stress without compromising its integrity as a barrier requires compartment-specific structural specialization and the capability to sense and adapt to mechanical cues. This review discusses the unique mechanical properties of the skin and the importance of signals that arise from mechanical communication between cells and their environment.
  • Liu, Li; Kryvokhyzha, Dmytro; Rippe, Catarina; Jacob, Aishwarya; Borreguero-Munoz, Andrea; Stenkula, Karin G.; Hansson, Ola; Smith, Christopher W. J.; Fisher, Steven A.; Swärd, Karl (2022)
    Differentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3 ' exons in MYLK that encode telokin increased relative to 5 ' exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.
  • Sharili, Amir S.; Kenny, Fiona N.; Vartiainen, Maria K.; Connelly, John T. (2016)
    The actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior. Gene expression profiling of normal HaCaT keratinocytes compared to HaCaTs over-expressing wild-type beta-actin or beta-actin tagged with a nuclear localization sequence (NLS-actin), identified multiple adhesive and cytoskeletal genes, such as MYL9, ITGB1, and VCL, which were significantly down-regulated in keratinocytes with high levels of nuclear actin. In addition, genes associated with transcriptional regulation and apoptosis were up-regulated in cells over expressing NLS-actin. Functionally, accumulation of actin in the nucleus altered cytoskeletal and focal adhesion organization and inhibited cell motility. Exclusion of endogenous actin from the nucleus by knocking down Importin 9 reversed this phenotype and enhanced cell migration. Based on these findings, we conclude that the level of actin in the nucleus is a transcriptional regulator for tuning keratinocyte migration.
  • Sidorenko, Ekaterina; Vartiainen, Maria K. (2019)
    Myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) form an essential transcriptional complex that regulates the expression of many cytoskeletal genes in response to dynamic changes in the actin cytoskeleton. The nucleoskeleton, a "dynamic network of networks," consists of numerous proteins that contribute to nuclear shape and to its various functions, including gene expression. In this review, we will discuss recent work that has identified many nucleoskeletal proteins, such as nuclear lamina and lamina-associated proteins, nuclear actin, and the linker of the cytoskeleton and nucleoskeleton complex as important regulators of MRTF-A/SRF transcriptional activity, especially in the context of mechanical control of transcription. Impact statement Regulation of gene expression is a fundamental cellular process that ensures the appropriate response of a cell to its surroundings. Alongside biochemical signals, mechanical cues, such as substrate rigidity, have been recognized as key regulators of gene expression. Nucleoskeletal components play an important role in mechanoresponsive transcription, particularly in controlling the activity of MRTF-A/SRF transcription factors. This ensures that the cell can balance the internal and external mechanical forces by fine-tuning the expression of cytoskeletal genes.
  • Liu, Li; Rippe, Catarina; Hansson, Ola; Kryvokhyzha, Dmytro; Fisher, Steven; Ekman, Mari; Sward, Karl (2021)
    Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) are co-factors of serum response factor (SRF) that activate the smooth muscle cell (SMC) gene program and that play roles in cardiovascular development and mechanobiology. Gain and loss of function experiments have defined the SMC gene program under control of MRTFs, yet full understanding of their impact is lacking. In the present study, we tested the hypothesis that the muscarinic M-3 receptor (CHRM3) is regulated by MRTFs together with SRF. Forced expression of MYOCD (8d) in human coronary artery (SMC) followed by RNA-sequencing showed increased levels of M-2, M-3, and M-5 receptors (CHRM2: 2-fold, CHRM3: 16-fold, and CHRM5: 2-fold). The effect of MYOCD on M-3 was confirmed by RT-qPCR using both coronary artery and urinary bladder SMCs, and correlation analyses using human transcriptomic datasets suggested that M-3 may also be regulated by MRTF-B. Head-to-head comparisons of MYOCD, MRTF-A and MRTF-B, argued that while all MRTFs are effective, MRTF-B is the most powerful transactivator of CHRM3, causing a 600-fold increase at 120h. Accordingly, MRTF-B conferred responsiveness to the muscarinic agonist carbachol in Ca2+ imaging experiments. M-3 was suppressed on treatment with the MRTF-SRF inhibitor CCG-1423 using SMCs transduced with either MRTF-A or MRTF-B and using intact mouse esophagus in culture (by 92 +/- 2%). Moreover, silencing of SRF with a short hairpin reduced CHRM3 (by >60%) in parallel with alpha-actin (ACTA2). Tamoxifen inducible knockout of Srf in smooth muscle reduced Srf (by 54 +/- 4%) and Chrm3 (by 41 +/- 6%) in the urinary bladder at 10days, but Srf was much less reduced or unchanged in aorta, ileum, colon, trachea, and esophagus. Longer induction (21d) further accentuated the reduction of Chrm3 in the bladder and ileum, but no change was seen in the aorta. Single cell RNA-sequencing revealed that Mrtfb dominates in ECs, while Myocd dominates in SMCs, raising the possibility that Chrm3 may be driven by Mrtfb-Srf in the endothelium and by Myocd-Srf in SMCs. These findings define a novel transcriptional control mechanism for muscarinic M-3 receptors in human cells, and in mice, that could be targeted for therapy.
  • Rajakylä, Eeva Kaisa; Viita, Tiina; Kyheröinen, Salla; Huet, Guillaume; Treisman, Richard; Vartiainen, Maria K. (2015)
    Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-beta for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator.