Browsing by Subject "SEXUAL SELECTION"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • van Bemmelen, Rob S. A.; Kolbeinsson, Yann; Ramos, Raül; Gilg, Olivier; Alves, José A.; Smith, Malcolm; Schekkerman, Hans; Lehikoinen, Aleksi; Petersen, Ib Krag; Þórisson, Böðvar; Sokolov, Aleksandr A.; Välimäki, Kaisa; van der Meer, Tim; Okill, J. David; Bolton, Mark; Moe, Børge; Hanssen, Sveinn Are; Bollache, Loïc; Petersen, Aevar; Thorstensen, Sverrir; González-Solís, Jacob; Klaassen, Raymond H. G.; Tulp, Ingrid (2019)
    Non-breeding movement strategies of migratory birds may be expected to be flexibly adjusted to the distribution and quality of habitat, but only few studies compare movement strategies between populations using distinct migration routes and wintering areas. In thisour study, individual movement strategies of Rred-necked pPhalaropes Phalaropus lobatus, a long-distance migratory wader using saline waters in the non-breeding period, were studied using light-level geolocators. Results revealed the existence of two populations with distinct migration routes and wintering areas: one breeding in the north-eastern North Atlantic and migrating ca. 10,000 km oversea to the tropical eastern Pacific Ocean and the other breeding in Fennoscandia and Russia migrating ca. 6,000 km – largely over land – to the Arabian Sea (Indian Ocean). In line with our expectations, the transoceanic migration between the North Atlantic and the Pacific was associated with proportionately longer wings, a more even spread of stopovers in autumn and a higher migration speed in spring compared to the migration between Fennoscandian-Russian breeding grounds and the Arabian Sea. In the wintering period, birds wintering in the Pacific were stationaryresided in roughly a singlethe same area, whereas individuals wintering in the Arabian Sea showed individually consistent movementsd extensively between different areas, reflecting differences in spatio-temporal variation in primary productivity between the two wintering areas. Our study is unique in showing how habitat distribution shapes movement strategies over the entire non-breeding period within a species.
  • Linek, Nils; Brzek, Pawel; Gienapp, Phillip; O'Mara, M. Teague; Pokrovsky, Ivan; Schmidt, Andreas; Shipley, J. Ryan; Taylor, Jan R. E.; Tiainen, Juha; Volkmer, Tamara; Wikelski, Martin; Partecke, Jesko (2021)
    Background Many birds species range over vast geographic regions and migrate seasonally between their breeding and overwintering sites. Deciding when to depart for migration is one of the most consequential life-history decisions an individual may make. However, it is still not fully understood which environmental cues are used to time the onset of migration and to what extent their relative importance differs across a range of migratory strategies. We focus on departure decisions of a songbird, the Eurasian blackbird Turdus merula, in which selected Russian and Polish populations are full migrants which travel relatively long-distances, whereas Finnish and German populations exhibit partial migration with shorter migration distances. Methods We used telemetry data from the four populations (610 individuals) to determine which environmental cues individuals from each population use to initiate their autumn migration. Results When departing, individuals in all populations selected nights with high atmospheric pressure and minimal cloud cover. Fully migratory populations departed earlier in autumn, at longer day length, at higher ambient temperatures, and during nights with higher relative atmospheric pressure and more supportive winds than partial migrants; however, they did not depart in higher synchrony. Thus, while all studied populations used the same environmental cues, they used population-specific and locally tuned thresholds to determine the day of departure. Conclusions Our data support the idea that migratory timing is controlled by general, species-wide mechanisms, but fine-tuned thresholds in response to local conditions.
  • Hopkins, Juhani; Lehtonen, Topi K.; Baudry, Gautier; Kaitala, Arja (2021)
    How fecundity might be traded off with mate attraction and other aspects of reproduction in females remains poorly understood. We investigated these allocation trade-offs using the common glowworm (Lampyris noctiluca), a lampyrid beetle, in which flightless, sedentary females only use resources gathered during the larval stage to attract flying males by glowing. While sexual signaling was not found to have a significant fecundity cost, a delay in successfully attracting a mate greatly increased the risk of reproductive failure, with fecundity losses being more severe in small females. These findings are among the first to show that failure to quickly attract a mate can decrease female fecundity. The results also show how the length of delay before mating can drive the evolution of female sexual ornamentation.
  • Briolat, Emmanuelle S; Burdfield-Steel, Emily R; Paul, Sarah C; Rönkä, Katja Helena; Seymore, Brett M; Stankowich, Theodore; Stuckert, Adam M M (2019)
    Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Mullerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
  • Mück, Isabel; Heubel, Katja U. (2018)
    Although it has become clear that sexual selection may shape mating systems and drive speciation, the potential constraints of environmental factors on processes and outcomes of sexual selection are largely unexplored. Here, we investigate the geographic variation of such environmental factors, more precisely the quality and quantity of nest resources (bivalve shells) along a salinity gradient in the Baltic Sea Area (Baltic Sea, Sounds and Belts, and Kattegat). We further test whether we find any salinity-associated morphological differences in body size between populations of common gobies Pomatoschistus microps, a small marine fish with a resource-based mating system. In a geographically expansive field study, we sampled 5 populations of P. microps occurring along the salinity gradient (decreasing from West to East) in the Baltic Sea Area over 3 consecutive years. Nest resource quantity and quality decreased from West to East, and a correlation between mussel size and male body size was detected. Population density, sex ratios, mating- and reproductive success as well as brood characteristics also differed between populations but with a less clear relation to salinity. With this field study we shed light on geographic variation of distinct environmental parameters possibly acting on population differentiation. We provide insights on relevant ecological variation, and draw attention to its importance in the framework of context-dependent plasticity of sexual selection.
  • Priklopil, Tadeas; Kisdi, Eva; Gyllenberg, Mats (2015)
    We consider mating strategies for females who search for males sequentially during a season of limited length. We show that the best strategy rejects a given male type if encountered before a time-threshold but accepts him after. For frequency-independent benefits, we obtain the optimal time-thresholds explicitly for both discrete and continuous distributions of males, and allow for mistakes being made in assessing the correct male type. When the benefits are indirect (genes for the offspring) and the population is under frequency-dependent ecological selection, the benefits depend on the mating strategy of other females as well. This case is particularly relevant to speciation models that seek to explore the stability of reproductive isolation by assortative mating under frequency-dependent ecological selection. We show that the indirect benefits are to be quantified by the reproductive values of couples, and describe how the evolutionarily stable time-thresholds can be found. We conclude with an example based on the Levene model, in which we analyze the evolutionarily stable assortative mating strategies and the strength of reproductive isolation provided by them.
  • O'Sullivan, Ronan James; Aykanat, Tutku; Johnston, Susan E.; Kane, Adam; Poole, Russell; Rogan, Ger; Prodöhl, Paulo A.; Primmer, Craig R.; McGinnity, Philip; Reed, Thomas Eric (2019)
    Comparing observed versus theoretically expected evolutionary responses is important for our understanding of the evolutionary process, and for assessing how species may cope with anthropogenic change. Here, we document directional selection for larger female size in Atlantic salmon, using pedigree-derived estimates of lifetime reproductive success as a fitness measure. We show the trait is heritable and, thus, capable of responding to selection. The Breeder's Equation, which predicts microevolution as the product of phenotypic selection and heritability, predicted evolution of larger size. This was at odds, however, with the observed lack of either phenotypic or genetic temporal trends in body size, a so-called "paradox of stasis." To investigate this paradox, we estimated the additive genetic covariance between trait and fitness, which provides a prediction of evolutionary change according to Robertson's secondary theorem of selection (STS) that is unbiased by missing variables. The STS prediction was consistent with the observed stasis. Decomposition of phenotypic selection gradients into genetic and environmental components revealed a potential upward bias, implying unmeasured factors that covary with trait and fitness. These results showcase the power of pedigreed, wild population studies-which have largely been limited to birds and mammals-to study evolutionary processes on contemporary timescales.
  • Loehr, John; Leinonen, Tuomas; Herczeg, Gabor; O'Hara, Robert B.; Merilä, Juha (2012)
  • Trokovic, Nina; Herczeg, Gabor; Ab Ghani, Nurul Izza; Shikano, Takahito; Merila, Juha (2012)
    Background Fluctuating asymmetry (FA), defined as small random deviations from the ideal bilateral symmetry, has been hypothesized to increase in response to both genetic and environmental stress experienced by a population. We compared levels of FA in 12 bilateral meristic traits (viz. lateral-line system neuromasts and lateral plates), and heterozygosity in 23 microsatellite loci, among four marine (high piscine predation risk) and four pond (zero piscine predation risk) populations of nine-spined sticklebacks (Pungitius pungitius). Results Pond sticklebacks had on average three times higher levels of FA than marine fish and this difference was highly significant. Heterozygosity in microsatellite markers was on average two times lower in pond (HE ≈ 0.3) than in marine (HE ≈ 0.6) populations, and levels of FA and heterozygosity were negatively correlated across populations. However, after controlling for habitat effect on heterozygosity, levels of FA and heterozygosity were uncorrelated. Conclusions The fact that levels of FA in traits likely to be important in the context of predator evasion were elevated in ponds compared to marine populations suggests that relaxed selection for homeostasis in ponds lacking predatory fish may be responsible for the observed habitat difference in levels of FA. This inference also aligns with the observation that the levels of genetic variability across the populations did not explain population differences in levels of FA after correcting for habitat effect. Hence, while differences in strength of selection, rather than in the degree of genetic stress could be argued to explain habitat differences in levels of FA, the hypothesis that increased FA in ponds is caused by genetic stress cannot be rejected.
  • Lehtonen, Topi Kasperi; Kaitala, Arja Leena (2020)
    Spatial distributions of sexual competitors and potential mating partners have a large impact on sexual selection and mating systems. Typically, such effects are investigated with regard to male aggregations. However, females may also need to compete for mating opportunities. Here, we investigated the consequences of clustering and rival attractiveness on female mate attraction success under field conditions in a nocturnal beetle, the common glowworm, Lampyrus noctiluca. We placed dummy females of two glow intensity (attractiveness) levels either alone or in clusters of varying attractiveness compositions. We found that, by displaying alone rather than in a cluster, females have a higher probability of mating and greater potential to exercise mate choice. Within clusters, females of both attractiveness levels had the highest probability of mating when having neighbors of only the less attractive type. These results show that both the presence and attractiveness of rivals can strongly influence females’ mate attraction. The findings also suggest that the typical distribution of glowing females in the wild is better explained by female than male benefits. Hence, the results highlight the important links between spatial distribution of females, male mate searching, and sexual selection.
  • Pärssinen, Varpu; Kalb, Nadine; Vallon, Martin; Anthes, Nils; Heubel, Katja (2019)
    Nests play a critical role for offspring development across the animal kingdom. Nest quality may contribute to the builder's extended phenotype and serve as an ornament during mate choice. We examined male and female nest choice in the common goby (Pomatoschistus microps), a benthic fish with male-only parental care where females deposit eggs in male-built nests. Using prebuilt nest models, we independently manipulated two candidate nest quality traits: (a) nest entrance width with a role in oxygen ventilation, and (b) extent of sand cover with a role in camouflage. In simultaneous choice trials, male gobies exhibited no preference for any nest model type. This suggests that initial characteristics of a nesting substrate have minor importance for males, which usually remodel the nest. Females were given a choice between two males occupying either entrance- or cover-manipulated nests. The same pair of males was then exposed to a second female but now with alternated nest types assigned. Most females were consistent in choosing the same, typically the heavier male of the two regardless of nest properties. However, the females that chose the same nest regardless of the male preferred low over high sand coverage and narrow over wide nest entrance. Our results indicate that females base their mating decision on a combination of male phenotype and nest traits. While we found no indication that females are attracted to highly decorated nests, our study is the first in fishes to disentangle a preference for narrow (and thus more protective) nest entrances independent of nest coverage.
  • Gravolin, Isaac; Lehtonen, Topi Kasperi; Deal, Nicholas D. S.; Candolin, Ulrika; Wong, Bob (2021)
    Nest predation has a large impact on reproductive success in many taxa. Defending offspring from would-be predators can also be energetically and physiologically costly for parents. Thus, to maximize their reproductive payoffs, individuals should adjust their reproductive behaviors in relation to the presence of nest predators. However, effects of nest predator presence on parental behaviors across multiple reproductive contexts remain poorly understood, particularly in non-avian taxa. We ran a series of experiments to test how the presence of an egg predator, the invasive rockpool shrimp, Palaemon elegans, influences male reproductive decisions and egg survival in a species of fish with exclusive paternal care, the three-spined stickleback, Gasterosteus aculeatus. We found that, in the presence of shrimp, male sticklebacks were less likely to build a nest, invested less in territory defense against an intruder, and tended to fan eggs in their nest less and in shorter bouts, but did not alter their investment in courtship behavior. The predator's presence also did not affect egg survival rates, suggesting that males effectively defended their brood from the shrimp. These results show that reproducing individuals can be highly responsive to the presence of nest predators and adjust their behavioral decisions accordingly across a suite of reproductive contexts.
  • Rojas, Bibiana; Burdfield-Steel, Emily; De Pasqual, Chiara; Gordon, Swanne; Hernandez, Linda; Mappes, Johanna; Nokelainen, Ossi; Ronka, Katja; Lindstedt, Carita (2018)
    Chemically defended animals often display conspicuous color patterns that predators learn to associate with their unprofitability and subsequently avoid. Such animals (i.e., aposematic), deter predators by stimulating their visual and chemical sensory channels. Hence, aposematism is considered to be "multimodal." The evolution of warning signals (and to a lesser degree their accompanying chemical defenses) is fundamentally linked to natural selection by predators. Lately, however, increasing evidence also points to a role of sexual selection shaping warning signal evolution. One of the species in which this has been shown is the wood tiger moth, Arctia plantaginis, which we here put forward as a promising model to investigate multimodality in aposematic and sexual signaling. A. plantaginis is an aposematic diurnal moth which exhibits sexually dimorphic coloration as well as sex-limited polymorphism in part of its range. The anti-predator function of its coloration and, more recently, its chemical defenses (even when experimentally decoupled from the visual signals), has been well-demonstrated. Interestingly, recent studies have revealed differences between the two male morphs in mating success, suggesting a role of coloration in mate choice or attraction, and providing a possible explanation for its sexual dimorphism in coloration. Here, we: (1) review the lines of evidence showing the role of predation pressure and sexual selection in the evolution of multimodal aposematic signals in general, and in the wood tiger moth in particular; (2) establish gaps in current research linking sexual selection and predation as selective pressures on aposematic signals by reviewing a sample of the literature published in the last 30 years; (3) highlight the need of identifying suitable systems to address simultaneously the effect of natural and sexual selection on multimodal aposematic signals; and (4) propose directions for future research to test how aposematic signals can evolve under natural and sexual selection.
  • Gordon, Swanne P.; Burdfield-Steel, Emily; Kirvesoja, Jimi; Mappes, Riitta Johanna (2021)
    Polymorphic warning signals in aposematic systems are enigmatic because predator learning should favor the most common form, creating positive frequency-dependent survival. However, many populations exhibit variation in warning signals. There are various selective mechanisms that can counter positive frequency-dependent selection and lead to temporal or spatial warning signal diversification. Examining these mechanisms and their effects requires first confirming whether the most common morphs are favored at both local and regional scales. Empirical examples of this are uncommon and often include potentially confounding factors, such as a lack of knowledge of predator identity and behavior. We tested how bird behavior influences the survival of three coexisting morphs of the aposematic wood tiger moth Arctia plantaginis offered to a sympatric predator (great tit Parus major) at different frequencies. We found that although positive frequency-dependent selection is present, its strength is affected by predator characteristics and varying prey profitability. These results highlight the need to understand predator foraging in natural communities with variable prey defenses in order to better examine how behavioral interactions shape evolutionary outcomes.
  • Karvonen, Anssi; Lindström, Kai (2018)
    Parasitism is considered a major selective force in natural host populations. Infections can decrease host condition and vigour, and potentially influence, for example, host population dynamics and behavior such as mate choice. We studied parasite infections of two common marine fish species, the sand goby (Pomatoschistus minutus) and the common goby (Pomatoschistus microps), in the brackish water Northern Baltic Sea. We were particularly interested in the occurrence of parasite taxa located in central sensory organs, such as eyes, potentially affecting fish behavior and mate choice. We found that both fish species harbored parasite communities dominated by taxa transmitted to fish through aquatic invertebrates. Infections also showed significant spatiotemporal variation. Trematodes in the eyes were very few in some locations, but infection levels were higher among females than males, suggesting differences in exposure or resistance between the sexes. To test between these hypotheses, we experimentally exposed male and female sand gobies to infection with the eye fluke Diplostomum pseudospathaceum. These trials showed that the fish became readily infected and females had higher parasite numbers, supporting higher susceptibility of females. Eye fluke infections also caused high cataract intensities among the fish in the wild. Our results demonstrate the potential of these parasites to influence host condition and visual abilities, which may have significant implications for survival and mate choice in goby populations.
  • Class, Barbara; Kluen, Edward; Brommer, Jon E. (2019)
    Indirect sexual selection arises when reproductive individuals choose their mates based on heritable ornaments that are genetically correlated to fitness. Evidence for genetic associations between ornamental colouration and fitness remains scarce. In this study, we investigate the quantitative genetic relationship between different aspects of tail structural colouration (brightness, hue and UV chroma) and performance (cell-mediated immunity, body mass and wing length) in blue tit (Cyanistes caeruleus) nestlings. In line with previous studies, we find low heritability for structural colouration and moderate heritability for performance measures. Multivariate animal models show positive genetic correlations between the three measures of performance, indicating quantitative genetic variation for overall performance, and tail brightness and UV chroma, two genetically independent colour measures, are genetically correlated with performance (positively and negatively, respectively). Our results suggest that mate choice based on independent aspects of tail colouration can have fitness payoffs in blue tits and provide support for the indirect benefits hypothesis. However, low heritability of tail structural colouration implies that indirect sexual selection on mate choice for this ornament will be a weak evolutionary force.
  • Baur, Julian; Jagusch, Dorian; Michalak, Piotr; Koppik, Mareike; Berger, David (2022)
    To mitigate the effects of climate change, it is important to understand species' responses to increasing temperatures. This has often been done by studying survival or activity at temperature extremes. Before such extremes are reached, however, effects on fertility may already be apparent. Sex differences in the thermal sensitivity of fertility (TSF) could impact species persistence under climate warming because female fertility is typically more limiting to population growth than male fertility. However, little is known about sex differences in TSF. Here we first demonstrate that the mating system can strongly influence TSF using the seed beetle Callosobruchus maculatus. We exposed populations carrying artificially induced mutations to two generations of short-term experimental evolution under alternative mating systems, manipulating the opportunity for natural and sexual selection on the mutations. We then measured TSF in males and females subjected to juvenile or adult heat stress. Populations kept under natural and sexual selection had higher fitness, but similar TSF, compared to control populations kept under relaxed selection. However, females had higher TSF than males, and strikingly, this sex difference had increased over only two generations in populations evolving under sexual selection. We hypothesized that an increase in male-induced harm to females during mating had played a central role in driving this evolved sex difference, and indeed, remating under conditions limiting male harassment of females reduced both male and female TSF. Moreover, we show that manipulation of mating system parameters in C. maculatus generates intraspecific variation in the sex difference in TSF equal to that found among a diverse set of studies on insects. Our study provides a causal link between the mating system and TSF. Sexual conflict, (re)mating rates and genetic responses to sexual selection differ among ecological settings, mating systems and species. Our study therefore also provides mechanistic understanding for the variability in previously reported TSFs which can inform future experimental assays and predictions of species responses to climate warming. A free Plain Language Summary can be found within the Supporting Information of this article.
  • Urban, Sabine; Gerwin, Jan; Hulsey, C. Darrin; Meyer, Axel; Kratochwil, Claudius F. (2022)
    Abstract Color patterns are often linked to the behavioral and morphological characteristics of an animal, contributing to the effectiveness of such patterns as antipredatory strategies. Species-rich adaptive radiations, such as the freshwater fish family Cichlidae, provide an exciting opportunity to study trait correlations at a macroevolutionary scale. Cichlids are also well known for their diversity and repeated evolution of color patterns and body morphology. To study the evolutionary dynamics between color patterns and body morphology, we used an extensive dataset of 461 species. A phylogenetic supertree of these species shows that stripe patterns evolved ~70 times independently and were lost again ~30 times. Moreover, stripe patterns show strong signs of correlated evolution with body elongation, suggesting that the stripes? effectiveness as antipredatory strategy might differ depending on the body shape. Using pedigree-based analyses, we show that stripes and body elongation segregate independently, indicating that the two traits are not genetically linked. Their correlation in nature is therefore likely maintained by correlational selection. Lastly, by performing a mate preference assay using a striped CRISPR-Cas9 mutant of a nonstriped species, we show that females do not differentiate between striped CRISPR mutant males and nonstriped wild-type males, suggesting that these patterns might be less important for species recognition and mate choice. In summary, our study suggests that the massive rates of repeated evolution of stripe patterns are shaped by correlational selection with body elongation, but not by sexual selection.
  • Thibert-Plante, Xavier; Praebel, Kim; Ostbye, Kjartan; Kahilainen, Kimmo K.; Amundsen, Per-Arne; Gavrilets, Sergey (2020)
    Modern speciation theory has greatly benefited from a variety of simple mathematical models focusing on the conditions and patterns of speciation and diversification in the presence of gene flow. Unfortunately the application of general theoretical concepts and tools to specific ecological systems remains a challenge. Here we apply modeling tools to better understand adaptive divergence of whitefish during the postglacial period in lakes of northern Fennoscandia. These lakes harbor up to three different morphs associated with the three major lake habitats: littoral, pelagic, and profundal. Using large-scale individual-based simulations, we aim to identify factors required for in situ emergence of the pelagic and profundal morphs in lakes initially colonized by the littoral morph. The importance of some of the factors we identify and study - sufficiently large levels of initial genetic variation, size- and habitat-specific mating, sufficiently large carrying capacity of the new niche - is already well recognized. In addition, our model also points to two other factors that have been largely disregarded in theoretical studies: fitness-dependent dispersal and strong predation in the ancestral niche coupled with the lack of it in the new niche(s). We use our theoretical results to speculate about the process of diversification of whitefish in Fennoscandia and to identify potentially profitable directions for future empirical research.