Browsing by Subject "SI"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Khanam, Afrina; Vohra, Anurag; Slotte, Jonatan; Makkonen, Ilja; Loo, Roger; Pourtois, Geoffrey; Vandervorst, Wilfried (2020)
    Positron annihilation spectroscopy in the Doppler and coincidence Doppler mode was applied on Ge1 xSnx epitaxial layers, grown by chemical vapor deposition with different total As concentrations (1019-1021 cm3), high active As concentrations (1019 cm3), and similar Sn concentrations (5.9%-6.4%). Positron traps are identified as mono-vacancy complexes. Vacancy-As complexes, V-Asi, formed during the growth were studied to deepen the understanding of the electrical passivation of the Ge1 xSnx:As epilayers. Larger monovacancy complexes, V-Asi (i 2), are formed as the As doping increases. The total As concentration shows a significant impact on the saturation of the number of As atoms (i 1/4 4) around the vacancies in the sample epilayers. The presence of V-Asi complexes decreases the dopant activation in the Ge1 xSnx:As epilayers. Furthermore, the presence of Sn failed to hinder the formation of larger V-Asi complexes and thus failed to reduce the donor-deactivation.
  • Zhang, Shuo; Pakarinen, Olli Heikki; Backholm, Matilda; Djurabekova, Flyura; Nordlund, Kai; Keinonen, Juhani; Wang, T.S. (2018)
    In this work, we first simulated the amorphization of crystalline quartz under 50 keV Na-23 ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eV.atom(-1). We also applied other analysis methods, such as angular structure factor, Wigner-Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eV.atom(-1). The continued evolution of the SiO2 structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.
  • Gädda, Akiko; Ott, Jennifer; Karadzhinova-Ferrer, Aneliya; Golovleva, Maria; Kalliokoski, Matti; Winkler, Alexander; Luukka, Panja; Härkönen, Jaakko (2019)
    The suitability of two low-temperature dielectric passivation layer processes for the fabrication of Cadmium Telluride (CdTe) X-ray detectors has been investigated. The CdTe crystals with a size of (10 10 1) mm were coated with sputtered aluminum nitride (AlN) or with aluminum oxide (AlO) grown by the atomic layer deposition (ALD) method. The metallization contacts of the detectors were made by titanium tungsten (TiW) and gold (Au) metal sputtering depositions. The pad detector structures were patterned with proximity-contactless photolithography techniques followed by lift-off patterning of the electrodes. The detector properties were characterized at room temperature by Transient Current Technique (TCT) measurements. The obtained results were compared and verified by numerical TCAD simulations of the detector response. Our results indicate that higher signal charge was collected from samples with AlO. Furthermore, no significant laser light induced signal decay by CdTe material polarization was observed within order of 30 min of continuous illumination.
  • Lankinen, Kaisu; Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika (2016)
    Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever-changing stimuli in the environment. One practical approach to study the neural underpinnings of real-life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single-trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long-latency (85-175 ms) parts of the responses were modulated in concordance with the participants' average moment-by-moment ratings of own engagement in the haptic content of the movie (correlation r=0.49; ratings collected after the MEG session). The results, obtained by using novel signal-analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine-grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061-4068, 2016. (c) 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
  • Tallberg, Petra; Räike, Antti; Lukkari, Kaarina; Leivuori, Mirja; Lehtoranta, Jouni; Pitkänen, Heikki (2012)
  • Mota-Santiago, P.; Vazquez, H.; Bierschenk, T.; Kremer, F.; Nadzri, A.; Schauries, D.; Djurabekova, F.; Nordlund, K.; Trautmann, C.; Mudie, S.; Ridgway, M. C.; Kluth, P. (2018)
    The cylindrical nanoscale density variations resulting from the interaction of 185 MeV and 2.2 GeV Au ions with 1.0 mu m thick amorphous SiNx:H and SiOx:H layers are determined using small angle x-ray scattering measurements. The resulting density profiles resembles an under-dense core surrounded by an over-dense shell with a smooth transition between the two regions, consistent with molecular-dynamics simulations. For amorphous SiNx:H, the density variations show a radius of 4.2 nm with a relative density change three times larger than the value determined for amorphous SiOx:H, with a radius of 5.5 nm. Complementary infrared spectroscopy measurements exhibit a damage cross-section comparable to the core dimensions. The morphology of the density variations results from freezing in the local viscous flow arising from the non-uniform temperature profile in the radial direction of the ion path. The concomitant drop in viscosity mediated by the thermal conductivity appears to be the main driving force rather than the presence of a density anomaly.
  • Tuomisto, Filip; Norrman, V.; Makkonen, I. (2014)
    We present results of theoretical calculations of positron annihilation signals in InGaN alloys with and without vacancies. We demonstrate the sensitivity of the signals to the different configurations of the In/Ga atoms in In1-xGaxN supercells.
  • Ott, Jennifer; Pasanen, Toni P.; Repo, Paivikki; Seppanen, Heli; Vahanissi, Ville; Savin, Hele (2019)
    Silicon radiation and particle detectors are traditionally passivated with thermal silicon dioxide. It has been shown that aluminum oxide (Al2O3) films provide better surface passivation due to their high negative charge, but studies on Al2O3 surface passivation are usually performed on low-resistivity substrates. Herein, the passivation of high-resistivity, detector-grade float zone silicon (FZ-Si) with Al2O3 is studied, with a specific emphasis on the effect of post-annealing temperature on carrier lifetimes and film properties. It is confirmed that Al2O3 provides excellent surface passivation also on high-resistivity FZ-Si substrates, with a low interface defect density of around (2-4) x 10(11) cm(-2) eV(-1) and a high negative oxide charge of 1 x 10(12) to 3 x 10(12) q cm(-2), when post-annealed at temperatures of up to 450-500 degrees C. In addition, high-resistivity samples are studied for the phenomenon of bulk lifetime degradation occurring at typical post-annealing or metal sintering temperatures, which has been reported for low-resistivity FZ-Si. At post-annealing temperatures of >500 degrees C, reduced bulk lifetimes are observed if the substrates did not receive high-temperature treatment prior to surface passivation. Furthermore, it is noticed that n-type samples exhibit lower bulk lifetimes even when a high-temperature treatment is performed, which indicates a connection between FZ-Si bulk lifetime degradation and doping type.