Browsing by Subject "SMEAR-II"

Sort by: Order: Results:

Now showing items 1-16 of 16
  • Virkkula, Aki; Pohja, Toivo; Aalto, Pasi P.; Keronen, Petri; Schobesberger, Siegfried; Clements, Craig B.; Petäjä, Tuukka; Nikmo, Juha; Kulmala, Markku (2014)
  • Yli-Juuti, Taina; Tikkanen, Olli-Pekka; Manninen, Hanna E.; Nieminen, Tuomo; Kulmala, Markku (2016)
    We analyzed nanoparticle growth during new-particle-formation events based on ten years of measurements carried out at a boreal forest site in Hyytiala, Finland, concentrating on the sub-3 nm particles and the role of sulfuric acid in their growth. Growth rates of 1.5-3 nm diameter particles were determined from ion spectrometer measurements and compared with parameterized sulfuric acid concentration and other atmospheric parameters. The calculated growth rates from sulfuric acid condensation were on average 7.4% of the observed growth rates and the two did not correlate. These suggest that neither sulfuric acid monomer condensation nor coagulation of small sulfuric acid clusters was the primary growth mechanism in these atmospheric conditions. Also no clear sign of organic condensation being the single main growth mechanism was seen. These observations are consistent with the hypothesis that several factors have comparative roles in the sub-3 nm growth.
  • Kulmala, Markku; Nieminen, Tuomo; Nikandrova, Anna; Lehtipalo, Katrianne; Manninen, Hanna E.; Kajos, Maija K.; Kolari, Pasi; Lauri, Antti; Petaja, Tuukka; Krejci, Radovan; Hansson, Hans-Christen; Swietlicki, Erik; Lindroth, Anders; Christensen, Torben R.; Arneth, Almut; Hari, Pertti; Back, Jaana; Vesala, Timo; Kerminen, Veli-Matti (2014)
  • Nikandrova, Anna; Tabakova, Ksenia; Manninen, Antti J.; Väänänen, Riikka; Petäjä, Tuukka; Kulmala, Markku; Kerminen, Veli-Matti; O'Connor, Ewan (2018)
    Understanding the distribution of aerosol layers is important for determining long-range transport and aerosol radiative forcing. In this study we combine airborne in situ measurements of aerosol with data obtained by a ground-based high spectral resolution lidar (HSRL) and radiosonde profiles to investigate the temporal and vertical variability of aerosol properties in the lower troposphere. The HSRL was deployed in Hyytiala, southern Finland, from January to September 2014 as a part of the U.S. DOE ARM (Atmospheric Radiation Measurement) mobile facility during the BAECC (Biogenic Aerosols - Effects on Cloud and Climate) Campaign. Two flight campaigns took place in April and August 2014 with instruments measuring the aerosol size distribution from 10 nm to 5 mu m at altitudes up to 3800 m. Two case studies with several aerosol layers present were selected from the flight campaigns for further investigation: one clear-sky and one partly cloudy case. During the clear-sky case, turbulent mixing ensured small temporal and spatial variability in the measured aerosol size distribution in the boundary layer, whereas mixing was not as homogeneous in the boundary layer during the partly cloudy case. The elevated layers exhibited larger temporal and spatial variability in aerosol size distribution, indicating a lack of mixing. New particle formation was observed in the boundary layer during the clear-sky case, and nucleation mode particles were also seen in the elevated layers that were not mixing with the boundary layer. Interpreting local measurements of elevated layers in terms of long-range transport can be achieved using back trajectories from Lagrangian models, but care should be taken in selecting appropriate arrival heights, since the modelled and observed layer heights did not always coincide. We conclude that higher confidence in attributing elevated aerosol layers to their air mass origin is attained when back trajectories are combined with lidar and radiosonde profiles.
  • Lawler, Michael J.; Rissanen, Matti P.; Ehn, Mikael; Mauldin, R. Lee; Sarnela, Nina; Sipilä, Mikko; Smith, James N. (2018)
    New particle formation (NPF) is an important contributor to particle number in many locations, but the chemical drivers for this process are not well understood. Daytime NPF events occur regularly in the springtime Finnish boreal forest and strongly impact aerosol abundance. In April 2014 size-resolved chemical measurements of ambient nanoparticles were made using the Time-of-Flight Thermal Desorption Chemical ionization Mass Spectrometer and we report results from two NPF events. While growth overall was dominated by terpene oxidation products, newly formed 20-70nm particles showed enhancement in apparent alkanoic acids. The events occurred on days with rapid transport of marine air, which correlated with low background aerosol loading and higher gas phase methanesulfonic acid levels. These results are broadly consistent with previous studies on Nordic NPF but indicate that further attention should be given to the sources and role of non-terpenoid organics and the possible contribution of transported marine compounds in this process. Plain Language Summary Clouds are an enormously important part of the climate system because they control the radiation entering and leaving the Earth. Clouds form as water condenses onto small particles called cloud condensation nuclei. These particles can be directly emitted from the Earth's surface, like sea spray, for example, or they can form in the atmosphere out of precursor gases. We have measured the composition of these atmosphere-formed particles to understand better how this process works in the Nordic boreal forest. We found that a diverse mix of processes and molecules are likely involved, possibly including the transport of materials from the ocean. While these results will ultimately lead to a better understanding of ocean-land-cloud interactions, they currently indicate that more work is needed to learn the processes involved.
  • Leino, Katri; Nieminen, Tuomo; Manninen, Hanna E.; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku (2016)
    Secondary aerosol formation from gas-phase precursors is a frequent phenomenon occurring in a boreal environment. Traditionally, this process is identified visually from observational data on total and ion number size distributions. Here, we introduce a new, objective classification method for the new particle formation events based on measured intermediate-ion concentrations. The intermediate-ion concentration is a suitable indicator of new particle formation, because it is linked to the atmospheric new particle formation. The concentration of intermediate ions is typically very low (below 5 cm(-3)) when there is no new particle formation or precipitation events occurring. In this study, we analysed concentrations of negative intermediate ions at the Station for Measuring Ecosystem Atmosphere Relations (SMEAR II) in Hyytiala, Finland, during the years 2003-2013. We found that the half-hour median concentration of negative intermediate ions in sizes 2-4 nm was > 20 cm(-3) during 77.5% of event days classified by traditional method. The corresponding value was 92.3% in the case of 2-7 nm negative ions. In addition, the intermediate-ion concentration varied seasonally in a similar manner as the number of event days, peaking in the spring. A typical diurnal variation of the intermediate-ion concentration resembled that of the particle concentration during the event days. We developed here a new method for classifying new particle formation events based on intermediate-ion concentrations. The new method is complementary to the traditional event analysis and it can also be used as an automatic way of determining new particle formation events from large data sets.
  • Dada, Lubna; Paasonen, Pauli; Nieminen, Tuomo; Mazon, Stephany Buenrostro; Kontkanen, Jenni; Peräkylä, Otso; Lehtipalo, Katrianne; Hussein, Tareq; Petäjä, Tuukka; Kerminen, Veli-Matti; Bäck, Jaana; Kulmala, Markku (2017)
    New particle formation (NPF) events have been observed all around the world and are known to be a major source of atmospheric aerosol particles. Here we combine 20 years of observations in a boreal forest at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations) in Hyytiala, Finland, by building on previously accumulated knowledge and by focusing on clear-sky (non-cloudy) conditions. We first investigated the effect of cloudiness on NPF and then compared the NPF event and nonevent days during clear-sky conditions. In this comparison we considered, for example, the effects of calculated particle formation rates, condensation sink, trace gas concentrations and various meteorological quantities in discriminating NPF events from nonevents. The formation rate of 1.5 nm particles was calculated by using proxies for gaseous sulfuric acid and oxidized products of low volatile organic compounds, together with an empirical nucleation rate coefficient. As expected, our results indicate an increase in the frequency of NPF events under clear-sky conditions in comparison to cloudy ones. Also, focusing on clear-sky conditions enabled us to find a clear separation of many variables related to NPF. For instance, oxidized organic vapors showed a higher concentration during the clear-sky NPF event days, whereas the condensation sink (CS) and some trace gases had higher concentrations during the nonevent days. The calculated formation rate of 3 nm particles showed a notable difference between the NPF event and nonevent days during clear-sky conditions, especially in winter and spring. For springtime, we are able to find a threshold equation for the combined values of ambient temperature and CS, (CS (s(-1)) > -3.091 x 10(-5) x T (in Kelvin) + 0.0120), above which practically no clear-sky NPF event could be observed. Finally, we present a probability distribution for the frequency of NPF events at a specific CS and temperature.
  • Aalto, J.; Kolari, P.; Hari, P.; Kerminen, V. -M.; Schiestl-Aalto, P.; Aaltonen, H.; Levula, J.; Siivola, E.; Kulmala, M.; Back, J. (2014)
  • Zaidan, M. A.; Haapasilta, V.; Relan, R.; Junninen, H.; Aalto, P. P.; Kulmala, M.; Laurson, L.; Foster, A. S. (2018)
    Atmospheric new-particle formation (NPF) is an important source of climatically relevant atmospheric aerosol particles. NPF can be directly observed by monitoring the time-evolution of ambient aerosol particle size distributions. From the measured distribution data, it is relatively straightforward to determine whether NPF took place or not on a given day. Due to the noisiness of the real-world ambient data, currently the most reliable way to classify measurement days into NPF event/non-event days is a manual visualization method. However, manual labor, with long multi-year time series, is extremely time-consuming and human subjectivity poses challenges for comparing the results of different data sets. These complications call for an automated classification process. This article presents a Bayesian neural network (BNN) classifier to classify event/non-event days of NPF using a manually generated database at the SMEAR II station in Hyytiala, Finland. For the classification, a set of informative features are extracted exploiting the properties of multi-modal log normal distribution fitted to the aerosol particle concentration database and the properties of the time series representation of the data at different scales. The proposed method has a classification accuracy of 84.2 % for determining event/non-event days. In particular, the BNN method successfully predicts all event days when the growth and formation rate can be determined with a good confidence level (often labeled as class Ia days). Most misclassified days (with an accuracy of 75 %) are the event days of class II, where the determination of growth and formation rate are much more uncertain. Nevertheless, the results reported in this article using the new machine learning-based approach points towards the potential of these methods and suggest further exploration in this direction.
  • Dada, Lubna; Chellapermal, Robert; Mazon, Stephany Buenrostro; Paasonen, Pauli; Lampilahti, Janne; Manninen, Hanna E.; Junninen, Heikki; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku (2018)
    Atmospheric new-particle formation (NPF) is a worldwide-observed phenomenon that affects the human health and the global climate. With a growing network of global atmospheric measurement stations, efforts towards investigating NPF have increased. In this study, we present an automated method to classify days into four categories including NPF events, non-events and two classes in between, which then ensures reproducibility and minimizes the hours spent on manual classification. We applied our automated method to 10 years of data collected at the SMEAR II measurement station in Hyytiala, southern Finland using a Neutral cluster and Air Ion Spectrometer (NAIS). In contrast to the traditionally applied classification methods, which categorize days into events and non-events and ambiguous days as undefined days, our method is able to classify the undefined days as it accesses the initial steps of NPF at sub-3 nm sizes. Our results show that, on similar to 24% of the days in Hyytiala, a regional NPF event occurred and was characterized by nice weather and favourable conditions such as a clear sky and low condensation sink. Another class found in Hyytiala is the transported event class, which seems to be NPF carried horizontally or vertically to our measurement location and it occurred on 17% of the total studied days. Additionally, we found that an ion burst, wherein the ions apparently fail to grow to larger sizes, occurred on 18% of the days in Hyytiala. The transported events and ion bursts were characterized by less favourable ambient conditions than regional NPF events and thus experienced interrupted particle formation or growth. Non-events occurred on 41% of the days and were characterized by complete cloud cover and high relative humidity. Moreover, for regional NPF events occurring at the measurement site, the method identifies the start time, peak time and end time, which helps us focus on variables within an exact time window to better understand NPF at a process level. Our automated method can be modified to work in other measurement locations where NPF is observed.
  • Hong, J.; Kim, J.; Nieminen, T.; Duplissy, J.; Ehn, M.; Äijälä, M.; Hao, L. Q.; Nie, W.; Sarnela, N.; Prisle, N. L.; Kulmala, M.; Virtanen, A.; Petäjä, T.; Kerminen, V. -M. (2015)
    Measurements of the hygroscopicity of 15145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a high-resolution aerosol mass spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGF(org)), fitted using the inverse Zdanovskii-Stokes-Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics concentration (ELVOC) and the HGF of particles of any size.
  • Chen, Xuemeng; Paatero, Jussi; Kerminen, Veli-Matti; Riuttanen, Laura; Hatakka, Juha; Hiltunen, Veijo; Paasonen, Pauli; Hirsikko, Anne; Franchin, Alessandro; Manninen, Hanna E.; Petäjä, Tuukka; Viisanen, Yrjo; Kulmala, Markku (2016)
    Radon-222 (Rn-222) has traditionally been used as an atmospheric tracer for studying air masses and planetary boundary-layer evolution. However, there are various factors that influence its atmospheric concentration. Therefore, we investigated the variability of the atmospheric radon concentration in response to the vertical air mixing and spatial transport in a boreal forest environment in northern Europe. Long-term Rn-222 data collected at the SMEAR II station in southern Finland during 2000-2006 were analysed along with meteorological data, mixing layer height retrievals and air-mass back trajectory information. The daily mean atmospheric radon concentration followed a log-normal distribution within the range <0.1-11 Bq m(-3), with the geometric mean of 2.5 Bq m(-3) and a geometric standard deviation of 1.7 Bq m(3). In spring, summer, autumn and winter, the daily mean concentrations were 1.7, 2.7, 2.8 and 2.7 Bq m(-3), respectively. The low, spring radon concentration was especially attributed to the joint effect of enhanced vertical mixing due to the increasing solar irradiance and inhibited local emissions due to snow thawing. The lowest atmospheric radon concentration was observed with northwesterly winds and high radon concentrations with southeasterly winds, which were associated with the marine and continental origins of air masses, respectively. The atmospheric radon concentration was in general inversely proportional to the mixing layer height. However, the ambient temperature and small-scale turbulent mixing were observed to disturb this relationship. The evolution of turbulence within the mixing layer was expected to be a key explanation for the delay in the response of the atmospheric radon concentration to the changes in the mixing layer thickness. Radon is a valuable naturally-occurring tracer for studying boundary layer mixing processes and transport patterns, especially when the mixing layer is fully developed. However, complementing information, provided by understanding the variability of the atmospheric radon concentration, is of high necessity to be taken into consideration for realistically interpreting the evolution of air masses or planetary boundary layer.
  • Sihto, Sanna-Liisa; Mikkilä, Jyri; Vanhanen, Joonas; Ehn, Mikael; Liao, Li; Lehtipalo, Katrianne; Aalto, Pasi; Duplissy, Jonathan; Petäjä, Tuukka; Kerminen, Veli-Matti; Boy, Michael; Kulmala, Markku (2011)
    As a part of EUCAARI activities, the annual cycle of cloud condensation nuclei (CCN) concentrations and critical diameter for cloud droplet activation as a function of supersaturation were measured using a CCN counter and a HTDMA (hygroscopicity tandem differential mobility analyzer) at SMEAR II station, Hyytiälä, Finland. The critical diameters for CCN activation were estimated from (i) the measured CCN concentration and particle size distribution data, and (ii) the hygroscopic growth factors by applying κ-Köhler theory, in both cases assuming an internally mixed aerosol. The critical diameters derived by these two methods were in good agreement with each other. The effect of new particle formation on the diurnal variation of CCN concentration and critical diameters was studied. New particle formation was observed to increase the CCN concentrations by 70–110%, depending on the supersaturation level. The average value for the κ-parameter determined from hygroscopicity measurements was κ = 0.18 and it predicted well the CCN activation in boreal forest conditions in Hyytiälä. The derived critical diameters and κ-parameter confirm earlier findings with other methods, that aerosol particles at CCN sizes in Hyytiälä are mostly organic, but contain also more hygrosopic, probably inorganic salts like ammonium sulphate, making the particles more CCN active than pure secondary organic aerosol.
  • Aaltonen, Hermanni; Pumpanen, J.; Hakola, H.; Vesala, T.; Rasmus, S.; Back, J. (2012)
  • Leino, Katri; Lampilahti, Janne; Poutanen, Pyry; Väänänen, Riikka; Manninen, Antti; Mazon, Stephany Buenrostro; Dada, Lubna; Franck, Anna; Wimmer, Daniela; Aalto, Pasi P.; Ahonen, Lauri R.; Enroth, Joonas; Kangasluoma, Juha; Keronen, Petri; Korhonen, Frans; Laakso, Heikki; Matilainen, Teemu; Siivola, Erkki; Manninen, Hanna E.; Lehtipalo, Katrianne; Kerminen, Veli-Matti; Petäjä, Tuukka; Kulmala, Markku (2019)
    This work presents airborne observations of sub-3 nm particles in the lower troposphere and investigates new particle formation (NPF) within an evolving boundary layer (BL). We studied particle concentrations together with supporting gas and meteorological data inside the planetary BL over a boreal forest site in Hyytiala, southern Finland. The analysed data were collected during three flight measurement campaigns: May-June 2015, August 2015 and April-May 2017, including 27 morning and 26 afternoon vertical profiles. As a platform for the instrumentation, we used a Cessna 172 aircraft. The analysed flight data were collected horizontally within a 30 km distance from SMEAR II in Hyytiala and vertically from 100 m above ground level up to 2700 m. The number concentration of 1.5-3 nm particles was observed to be, on average, the highest near the forest canopy top and to decrease with increasing altitude during the mornings of NPF event days. This indicates that the precursor vapours emitted by the forest play a key role in NPF in Hyytiala. During daytime, newly formed particles were observed to grow in size and the particle population became more homogenous within the well-mixed BL in the afternoon. During undefined days with respect to NPF, we also detected an increase in concentration of 1.5-3 nm particles in the morning but not their growth in size, which indicates an interrupted NPF process during these undefined days. Vertical mixing was typically stronger during the NPF event days than during the undefined or non-event days. The results shed light on the connection between boundary layer dynamics and NPF.