Browsing by Subject "SNOW"

Sort by: Order: Results:

Now showing items 1-20 of 22
  • Räisänen, Jouni (2017)
    An energy balance decomposition of temperature changes is conducted for idealized transient CO2-only simulations in the fifth phase of the Coupled Model Intercomparison Project. The multimodel global mean warming is dominated by enhanced clear-sky greenhouse effect due to increased CO2 and water vapour, but other components of the energy balance substantially modify the geographical and seasonal patterns of the change. Changes in the net surface energy flux are important over the oceans, being especially crucial for the muted warming over the northern North Atlantic and for the seasonal cycle of warming over the Arctic Ocean. Changes in atmospheric energy flux convergence tend to smooth the gradients of temperature change and reduce its land-sea contrast, but they also amplify the seasonal cycle of warming in northern North America and Eurasia. The three most important terms for intermodel differences in warming are the changes in the clear-sky greenhouse effect, clouds, and the net surface energy flux, making the largest contribution to the standard deviation of annual mean temperature change in 34, 29 and 20 % of the world, respectively. Changes in atmospheric energy flux convergence mostly damp intermodel variations of temperature change especially over the oceans. However, the opposite is true for example in Greenland and Antarctica, where the warming appears to be substantially controlled by heat transport from the surrounding sea areas.
  • Aalto, Juha; Scherrer, Daniel; Lenoir, Jonathan; Guisan, Antoine; Luoto, Miska (2018)
    Soil temperature (ST) has a key role in Arctic ecosystem functioning and global environmental change. However, soil thermal conditions do not necessarily follow synoptic temperature variations. This is because local biogeophysical processes can lead to a pronounced soil-atmosphere thermal offset (Delta T) while altering the coupling (beta Tau) between ST and ambient air temperature (AAT). Here, we aim to uncover the spatiotemporal variation in these parameters and identify their main environmental drivers. By deploying a unique network of 322 temperature loggers and surveying biogeophysical processes across an Arctic landscape, we found that the spatial variation in Delta T during the AAT 0 period, Delta T was controlled by soil characteristics, vegetation and solar radiation (Delta T = -0.6 degrees C +/- 1.0 degrees C). Importantly, Delta T was not constant throughout the seasons reflecting the influence of beta Tau on the rate of local soil warming being stronger after (mean beta Tau = 0.8 +/- 0.1) than before (beta Tau = 0.2 +/- 0.2) snowmelt. Our results highlight the need for continuous microclimatic and local environmental monitoring, and suggest a potential for large buffering and non-uniform warming of snow-dominated Arctic ecosystems under projected temperature increase.
  • Jylhä, Kirsti; Laapas, Mikko; Ruosteenoja, Kimmo; Arvola, Lauri; Drebs, Achim; Kersalo, Juha; Saku, Seppo; Gregow, Hilppa; Hannula, Henna-Reetta; Pirinen, Pentti (2014)
  • Li, Zhijun; Wang, Qingkai; Tang , Mingguang; Lu, Peng; Li , Guoyu; Leppäranta, Matti; Huotari, Jussi; Arvola, Lauri; Shi, Lijuan (2021)
    Ice surface albedo is an important factor in various optical remote sensing technologies used to determine the distribution of snow or melt water on the ice, and to judge the formation or melting of lake ice in winter, especially in cold and arid areas. In this study, field measurements were conducted at Wuliangsuhai Lake, a typical lake in the semi-arid cold area of China, to investigate the diurnal variation of the ice surface albedo. Observations showed that the diurnal variations of the ice surface albedo exhibit bimodal characteristics with peaks occurring after sunrise and before sunset. The curve of ice surface albedo with time is affected by weather conditions. The first peak occurs later on cloudy days compared with sunny days, whereas the second peak appears earlier on cloudy days. Four probability density distribution functions-Laplace, Gauss, Gumbel, and Cauchy-were combined linearly to model the daily variation of the lake ice albedo on a sunny day. The simulations of diurnal variation in the albedo during the period from sunrise to sunset with a solar altitude angle higher than 5 degrees indicate that the Laplace combination is the optimal statistical model. The Laplace combination can not only describe the bimodal characteristic of the diurnal albedo cycle when the solar altitude angle is higher than 5 degrees, but also reflect the U-shaped distribution of the diurnal albedo as the solar altitude angle exceeds 15 degrees. The scale of the model is about half the length of the day, and the position of the two peaks is closely related to the moment of sunrise, which reflects the asymmetry of the two peaks of the ice surface albedo. This study provides a basis for the development of parameterization schemes of diurnal variation of lake ice albedo in semi-arid cold regions.
  • Ruppel, Meri M.; Soares, Joana; Gallet, Jean-Charles; Isaksson, Elisabeth; Martma, Tonu; Svensson, Jonas; Kohler, Jack; Pedersen, Christina A.; Manninen, Sirkku; Korhola, Atte; Strom, Johan (2017)
    The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.
  • Lukes, Petr; Rautiainen, Miina; Manninen, Terhikki; Stenberg, Pauline; Mottus, Matti (2014)
    Land surface albedo is an essential climate variable controlling the planetary radiative energy budget, yet it is still among the main uncertainties of the radiation budget in the current climate modeling. To date, albedo satellite products have not been linked to extensive forest inventory data sets due to the lack of ground reference data. Here, we used comprehensive and detailed maps of forest inventory variables to couple forest structure and MODIS albedo products for both winter and summer conditions. We investigated how the relationships between forest variables and albedo change seasonally and along latitudinal gradients in the forest biomes of Finland between 60° and 70° N. We observed an increase in forest albedo with increasing latitude in winter but not in summer. Also, relationships between forest variables and the black-sky albedo or directional–hemispherical reflectance (DHR) at different latitudes were tighter in winter than in summer, especially for forest biomass. Summer albedo was only weakly correlated with the traditional inventory variables. Our findings suggest that the relationships between forest variables and DHR depend on latitude.
  • Leppäranta, Matti; Lindgren, Elisa; Arvola, Lauri (2016)
    Thermodynamics of a seasonal supraglacial lake were examined based on field data from three summers. At maximum, the lake body consisted of an upper layer with thin ice on top, and a lower layer with slush, hard ice and sediment at the bottom. Sublimation from the upper ice surface averaged to 0.7 mm d(-1), and melting in the ice interior averaged to 9.1 mm d(-1) during summer. Albedo was on average 0.6 and light attenuation coefficient was similar to 1 m(-1). Averaged over December and January, and over 3 different years, we found that the net solar heating was 137 W m(-2), while the losses averaged to 62 W m(-2) for the longwave radiation, 16 Wm(-2) for the sensible heat flux, 24 W m(-2) for the latent heat flux and 3 W m(-2) for the bottom flux. The depth scale is determined by the light attenuation distance and thermal diffusion coefficient, and the net liquid water volume ranged from 0.5 to 1.0 m in different years. The potential winter growth is more than summer melting, and thus the lake freezes up completely in winter in the present climate.
  • Moiseev, Dmitry; Lautaportti, Susanna; Alku, Laura; Tabakova, Ksenia; O'Connor, Ewan; Leskinen, Matti; Kulmala, Markku (2019)
    Abstract: Eleven years of dual-polarization weather radar data, complemented by satellite and lidar observations, were used to investigate the origin of areas of localized intensification of precipitation spotted in the vicinity of Helsinki-Vantaa airport. It was observed that existing precipitation is enhanced locally on spatial scales from a few kilometers to several tens of kilometers. The precipitation intensity in these localized areas was 6-14 times higher than the background large-scale precipitation rate. Surface observations and dual-polarization radar data indicate that snowflakes within the ice portion of the falling precipitation in the intensification regions are larger and more isotropic than in the surrounding precipitation. There appears to be an increase in the ice particle number concentration within the intensification region. The observed events were linked to arriving or departing air traffic. We advocate that the mechanism responsible for intensification is aircraft-produced ice particles boosting the aggregation growth of snowflakes. Plain Language Summary: By analyzing 11 years of dual-polarization weather radar observations in the Helsinki region, we have discovered that airplanes landing in or departing from the Helsinki-Vantaa airport could locally increase precipitation rate by as much as 14 times. The observed phenomenon is related to the hole-punch clouds, which are also forming with the help of airplanes. The reported observations allow us to have a better understanding of precipitation formation processes that take place in ice and mixed phase clouds. They show that falling ice crystals from upper clouds could seed lower clouds and therefore increase rain or snowfall intensity through the process called snowflake aggregation. During snowflake aggregation bigger faster falling particles are formed by ice particles colliding and sticking together.
  • Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun (2016)
    Solar radiation drives the melting of Arctic sea ice in summer, but its parameterization in thermodynamic modeling is difficult due to the large variability of the optical properties of sea ice in space and time. Here, a two-stream radiative transfer model was developed for the propagation of solar radiation in ponded sea ice to investigate the dependence of apparent optical properties (AOPs), particularly albedo and transmittance, on sky conditions, pond depth, ice thickness, and the inherent optical properties (IOPs) of ice and water. The results of numerical experiments revealed that decrease in melt-pond albedo during melting results not only from increase in pond depth but also from decrease in underlying ice thickness, and the latter is more important for thin ice with thickness less than 1.5 m. Hence, a parameterized pond albedo as a function of both pond depth and ice thickness is more suitable for thinning Arctic sea ice than the previously used exponential function of pond depth, which is valid for thicker ice. The increase in broadband transmittance during melting can be explained by the decrease in underlying ice thickness, because its dependence on ice thickness is nearly three times stronger than on pond depth. The spectral dependence of the pond albedo on depth is significant only in the 600-900-nm band, while it depends clearly on ice thickness in the 350-600-nm band. The uncertainty resulting from the absorption coefficient of ice is limited, while the effect of scattering in ice is more important, as determined by a sensitivity study on the influence of the IOPs on the AOPs of sea ice. The two-stream model provides a time-efficient parameterization of the AOPs for ponded sea ice, accounting for both absorption and scattering, and has potential for implementation into sea-ice thermodynamic models to explain the role of melt ponds in the summer decay of Arctic sea ice. (C) 2016 Elsevier B.V. All rights reserved.
  • Rasmus, Sirpa; Wallen, Henri; Turunen, Minna; Landauer, Mia; Tahkola, Juho; Jokinen, Mikko; Laaksonen, Sauli (2021)
    Drivers of change in the reindeer management system are rather well-known. But when developing the gover-nance to support the traditional livelihoods, it is crucial to understand also practitioner perceptions. Systematic research on these is lacking. We analyzed the land-use and climate related drivers within the reindeer man-agement area (RMA) in Finland, and, using a perception geography approach, studied the herder perceptions towards these. We conducted an on-site questionnaire survey with herders from 51 herding districts. Factors directly affecting the welfare of reindeer were perceived as crucial by herders, for example basal icing affecting the forage availability, and land-use related factors limiting the seasonal pasture access. Perceptions of herders on biophysical factors were rather homogeneous. The regional heterogeneities in perceptions towards land-use related factors could be explained by spatial differences in land-use and varying herding traditions. Cumulative land-use impacts raised particular concerns. Our approach can be utilized in the co-planning of the northern land-use and more widely in the co-management of natural resources.
  • Lu, Peng; Cao, Xiaowei; Li, Guoyu; Huan, Wenfeng; Leppäranta, Matti; Arvola, Lauri; Huotari, Jussi; Li, Zhijun (2020)
    To improve the understanding of the seasonal evolution of the mass and heat budget of ice-covered lakes in the cold and arid climate zone, in-situ observations were collected during two winters (2016-2017 and 2017-2018) in Lake Wuliangsuhai, Inner Mongolia, China. The mean snow thickness was 5.2 and 1.6 cm in these winters, due to low winter precipitation. The mean ice thickness was 50.9 and 36.1 cm, and the ice growth rate was 3.6 and 2.1 mm day(-1) at the lower boundary of ice. Analyses of mass and heat balance data from two winters revealed that the surface heat budget was governed by solar radiation and terrestrial radiation. The net heat flux loss of the ice was 9-22 W m(-2), affected by the snow and ice thickness. Compared to boreal lakes, Lake Wuliangsuhai received more solar radiation and heat flux from the water. The ice temperature had a strong diurnal variation, which was produced by the diurnal cycles of solar radiation, and air and water temperatures. These results expand our knowledge of the evolution of mass and heat balance in temperate lakes of mid-latitude arid areas.
  • Koskinen, Markku; Minkkinen, K.; Ojanen, P.; Kamarainen, M.; Laurila, Tuomas; Lohila, A. (2014)
  • Yang, Yu; Zhijun, Li; Leppäranta, Matti; Cheng, Bin; Shi, Liqiong; Lei, Ruibo (2016)
    Landfast sea ice forms and remains fixed along the coast for most of its life time. In Prydz Bay, landfast ice is seasonal due to melting, mechanical breakage and drift of ice in summer. Its annual cycle of thickness and temperature was examined using a one-dimensional thermodynamic model. Model calibration was made for March 2006 to March 2007 with forcing based on the Chinese National Antarctic Research Expedition data, which consisted of in situ ice and snow observations and meteorological records at the Zhongshan Station. The observed maximum annual ice thickness was 1.74 m. The ice broke and drifted out in summer when its thickness was 0.5-1.0 m. Oceanic heat flux was estimated by tuning the model with observed ice thickness. In the growth season, it decreased from 25 Wm(-2) to 5W m(-2), and in summer it recovered back to 25 W m(-2). Albedo was important in summer; by model tuning the estimated value was 0.6, consistent with the ice surface being bare all summer. Snow cover was thin, having a minor role. The results can be used to further our understanding of the importance of landfast ice in Antarctica for climate research and high-resolution ice-ocean modelling.
  • Backman, John; Schmeisser, Lauren; Virkkula, Aki; Ogren, John A.; Asmi, Eija; Starkweather, Sandra; Sharma, Sangeeta; Eleftheriadis, Konstantinos; Uttal, Taneil; Jefferson, Anne; Bergin, Michael; Makshtas, Alexander; Tunved, Peter; Fiebig, Markus (2017)
    Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than box-car averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Delta t) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations (>2.1-6.7Mm(-1) as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
  • Wilkman, Olli; Gritsevich, Maria; Zubko, Nataliya; Peltoniemi, Jouni I.; Muinonen, Karri (2016)
    We have performed laboratory measurements of the bidirectional reflectance factor (BRF) of a sample of dark volcanic sand. The measurements were carried out with three different treatments of the sample to produce different porosity and roughness characteristics. We model the measured BRF with a semi-numerical scattering model for particulate media, meant especially for dark planetary regoliths. We compare the BRF in two different spectral bands, 500-600 nm and 800-900 nm. The particulate medium (PM). scattering model is found to fit the measured data well, with a phase function representing the differences between the spectral bands. The interpretation of the physical parameters of the PM model is qualitatively sound, but remains somewhat uncertain due in part to the difficulty of characterizing the measured sample. (C) 2016 Elsevier Ltd. All rights reserved.
  • Leppäranta, Matti; Luttinen, Arto; Arvola, Lauri (2020)
    Shallow Antarctic surface lakes belong to the most extreme aquatic environments on the Earth. In Vestfjella, proglacial surface lakes and ponds are characterized by a 2-5 month long period with liquid water and depths <2 m. We give a detailed description of nine seasonal lakes and ponds situating at three nunataqs (Basen, Plogen and Fossilryggen) in western Dronning Maud Land. Their physical and geochemical properties are provided based on observations in four summers. Three main 'lake categories' were found: 1) supraglacial lakes, 2) epiglacial ponds and 3) nunataq ponds. Category 3 lakes can be divided into two subgroups with regards to whether the meltwater source is glacial or just seasonal snow patches. Supraglacial lakes are ultra-oligotrophic (electrical conductivity <10 mu S cm(-1), pH <7), while in epiglacial ponds the concentrations of dissolved and suspended matter and trophic status vary over a wide range (electrical conductivity 20-110 mu S cm(-1), pH 6-9). In nunataq ponds, the maxima were an electrical conductivity of 1042 mu S cm(-1)and a pH of 10.1, and water temperature may have wide diurnal and day-to-day fluctuations (maximum 9.3 degrees C) because snowfall, snow drift and sublimation influence the net solar irradiance.
  • Leinonen, Jussi; Lebsock, Matthew D.; Tanelli, Simone; Sy, Ousmane O.; Dolan, Brenda; Chase, Randy J.; Finlon, Joseph A.; von Lerber, Annakaisa; Moisseev, Dmitri (2018)
    We have developed an algorithm that retrieves the size, number concentration and density of falling snow from multifrequency radar observations. This work builds on previous studies that have indicated that three-frequency radars can provide information on snow density, potentially improving the accuracy of snow parameter estimates. The algorithm is based on a Bayesian framework, using lookup tables mapping the measurement space to the state space, which allows fast and robust retrieval. In the forward model, we calculate the radar reflectivities using recently published snow scattering databases. We demonstrate the algorithm using multifrequency airborne radar observations from the OLYMPEX-RADEX field campaign, comparing the retrieval results to hydrometeor identification using ground-based polarimetric radar and also to collocated in situ observations made using another aircraft. Using these data, we examine how the availability of multiple frequencies affects the retrieval accuracy, and we test the sensitivity of the algorithm to the prior assumptions. The results suggest that multifrequency radars are substantially better than single-frequency radars at retrieving snow microphysical properties. Meanwhile, triple-frequency radars can retrieve wider ranges of snow density than dual-frequency radars and better locate regions of highdensity snow such as graupel, although these benefits are relatively modest compared to the difference in retrieval performance between dual- and single-frequency radars. We also examine the sensitivity of the retrieval results to the fixed a priori assumptions in the algorithm, showing that the multi-frequency method can reliably retrieve snowflake size, while the retrieved number concentration and density are affected significantly by the assumptions.
  • Merkouriadi, Ioanna; Lepparanta, Matti; Shirasawa, Kunio (2013)
  • Cao, Xiaowei; Lu, Peng; Leppäranta, Matti; Arvola, Lauri; Huotari, Jussi; Shi, Xiaohong; Li, Guoyu; Li, Zhijun (2021)
    Spectral albedo and light transmittance through snow, ice, and water were measured in Lake Wuliangsuhai (40 degrees 36 '-41 degrees 30 ' N, 108 degrees 43 '-108 degrees 70 ' E), Inner Mongolia, China, during winter 2016. Data on the weather, structure of lake ice, and geochemistry of water were also collected during the 60-day field program. The study lake is shallow (mean depth 1.0-1.5 m) with a large wetland area. Compared with polar lakes, solar elevation is higher, snow accumulation is much lower, and the ice has more sediment. The ice was all congelation ice with a mean thickness of 36.6 cm, corresponding to a mean air temperature of -9.6 degrees C. The mean daily broadband albedo and photosynthetically active radiation (PAR) band transmittance were 0.54 and 0.08 (bare ice), 0.74 and 0.04 (new snow), and 0.30 and 0.12 (melting period), respectively. The level of light allowed photosynthesis to occur to the bottom of the lake. The ice acted as a grey filter for the sunlight with a mean attenuation coefficient of 2.1 m(-1). These results expand our knowledge of the evolution of light transfer through ice and snow cover and its role in the ecology of lakes in temperate and arid areas.
  • Marttila, Hannu; Lohila, Annalea; Ala-Aho, Pertti; Noor, Kashif; Welker, Jeffrey M.; Croghan, Danny; Mustonen, Kaisa; Meriö, Leo-Juhani; Autio, Anna; Muhic, Filip; Bailey, Hannah; Aurela, Mika; Vuorenmaa, Jussi; Penttilä, Timo; Hyöky, Valtteri; Klein, Eric; Kuzmin, Anton; Korpelainen, Pasi; Kumpula, Timo; Rauhala, Anssi; Kløve, Bjørn (2021)
    Subarctic ecohydrological processes are changing rapidly, but detailed and integrated ecohydrological investigations are not as widespread as necessary. We introduce an integrated research catchment site (Pallas) for atmosphere, ecosystems, and ecohydrology studies in subarctic conditions in Finland that can be used for a new set of comparative catchment investigations. The Pallas site provides unique observational data and high-intensity field measurement datasets over long periods. The infrastructure for atmosphere- to landscape-scale research in ecosystem processes in a subarctic landscape has recently been complemented with detailed ecohydrological measurements. We identify three dominant processes in subarctic ecohydrology: (a) strong seasonality drives ecohydrological regimes, (b) limited dynamic storage causes rapid stream response to water inputs (snowmelt and intensive storms), and (c) hydrological state of the system regulates catchment-scale dissolved carbon dynamics and greenhouse (GHG) fluxes. Surface water and groundwater interactions play an important role in regulating catchment-scale carbon balances and ecosystem respiration within subarctic peatlands, particularly their spatial variability in the landscape. Based on our observations from Pallas, we highlight key research gaps in subarctic ecohydrology and propose several ways forward. We also demonstrate that the Pallas catchment meets the need for sustaining and pushing the boundaries of critical long-term integrated ecohydrological research in high-latitude environments.