Browsing by Subject "SOIL BIODIVERSITY"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Cameron, Erin K.; Martins, Inês S.; Lavelle, Patrick; Mathieu, Jérôme; Tedersoo, Leho; Bahram, Mohammad; Gottschall, Felix; Guerra, Carlos A.; Hines, Jes; Patoine, Guillaume; Siebert, Julia; Winter, Marten; Cesarz, Simone; Ferlian, Olga; Kreft, Holger; Lovejoy, Thomas E.; Montanarella, Luca; Orgiazzi, Alberto; Pereira, Henrique M.; Phillips, Helen R. P.; Settele, Josef; Wall, Diana H.; Eisenhauer, Nico (2019)
    Human activities are accelerating global biodiversity change and have resulted in severely threatened ecosystem services. A large proportion of terrestrial biodiversity is harbored by soil, but soil biodiversity has been omitted from many global biodiversity assessments and conservation actions, and understanding of global patterns of soil biodiversity remains limited. In particular, the extent to which hotspots and coldspots of aboveground and soil biodiversity overlap is not clear. We examined global patterns of these overlaps by mapping indices of aboveground (mammals, birds, amphibians, vascular plants) and soil (bacteria, fungi, macrofauna) biodiversity that we created using previously published data on species richness. Areas of mismatch between aboveground and soil biodiversity covered 27% of Earth's terrestrial surface. The temperate broadleaf and mixed forests biome had the highest proportion of grid cells with high aboveground biodiversity but low soil biodiversity, whereas the boreal and tundra biomes had intermediate soil biodiversity but low aboveground biodiversity. While more data on soil biodiversity are needed, both to cover geographic gaps and to include additional taxa, our results suggest that protecting aboveground biodiversity may not sufficiently reduce threats to soil biodiversity. Given the functional importance of soil biodiversity and the role of soils in human well-being, soil biodiversity should be considered further in policy agendas and conservation actions by adapting management practices to sustain soil biodiversity and considering soil biodiversity when designing protected areas.
  • Bi, Qing-Fang; Jin, Bing-Jie; Zhu, Dong; Jiang, Yu-Gen; Zheng, Bang-Xiao; O'Connor, Patrick; Yang, Xiao-Ru; Richter, Andreas; Lin, Xian-Yong; Zhu, Yong-Guan (2021)
    The positive roles of earthworms on soil functionality has been extensively documented. The capacity of the earthworm gut microbiota on decomposition and nutrient cycling under long-term fertilization in field conditions has rarely been studied. Here, we report the structural, taxonomic, and functional responses of Eisenia foetida and Pheretima guillelmi gut microbiota to different fertilization regimes and durations using 16S rRNA gene-based Illumina sequencing and high-throughput quantitative PCR techniques. Our results revealed that the core gut microbiota, especially the fermentative bacteria were mainly sourced from the soil, but strongly stimulated with species-specificity, potential benefits for the host and soil health. The functional compositions of gut microbiota were altered by fertilization with fertilization duration being more influential than fertilization regimes. Moreover, the combination of organic and inorganic fertilization with the longer duration resulted in a higher richness and connectivity in the gut microbiota, and also their functional potential related to carbon (C), nitrogen, and phosphorus cycling, particularly the labile C decomposition, denitrification, and phosphate mobilization. We also found that long-term inorganic fertilization increased the abundance of pathogenic bacteria in the P. guillelmi gut. This study demonstrates that understanding earthworm gut microbiota can provide insights into how agricultural practices can potentially alter soil ecosystem functions through the interactions between soil and earthworm gut microbiotas.