Browsing by Subject "SOIL-MOISTURE"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Gao, Y.; Markkanen, T.; Thum, T.; Aurela, M.; Lohila, A.; Mammarella, I.; Kämäräinen, M.; Hagemann, S.; Aalto, T. (2016)
    Droughts can have an impact on forest functioning and production, and even lead to tree mortality. However, drought is an elusive phenomenon that is difficult to quantify and define universally. In this study, we assessed the performance of a set of indicators that have been used to describe drought conditions in the summer months (June, July, August) over a 30-year period (1981-2010) in Finland. Those indicators include the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), the Soil Moisture Index (SMI), and the Soil Moisture Anomaly (SMA). Herein, regional soil moisture was produced by the land surface model JSBACH of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). Results show that the buffering effect of soil moisture and the associated soil moisture memory can impact on the onset and duration of drought as indicated by the SMI and SMA, while the SPI and SPEI are directly controlled by meteorological conditions. In particular, we investigated whether the SMI, SMA and SPEI are able to indicate the Extreme Drought affecting Forest health (EDF), which we defined according to the extreme drought that caused severe forest damages in Finland in 2006. The EDF thresholds for the aforementioned indicators are suggested, based on the reported statistics of forest damages in Finland in 2006. SMI was found to be the best indicator in capturing the spatial extent of forest damage induced by the extreme drought in 2006. In addition, through the application of the EDF thresholds over the summer months of the 30-year study period, the SPEI and SMA tended to show more frequent EDF events and a higher fraction of influenced area than SMI. This is because the SPEI and SMA are standardized indicators that show the degree of anomalies from statistical means over the aggregation period of climate conditions and soil moisture, respectively. However, in boreal forests in Finland, the high initial soil moisture or existence of peat often prevent the EDFs indicated by the SPEI and SMA to produce very low soil moisture that could be indicated as EDFs by the SMI. Therefore, we consider SMI is more appropriate for indicating EDFs in boreal forests. The selected EDF thresholds for those indicators could be calibrated when there are more forest health observation data available. Furthermore, in the context of future climate scenarios, assessments of EDF risks in northern areas should, in addition to climate data, rely on a land surface model capable of reliable prediction of soil moisture.
  • Nunes, Matheus; Camargo, José Luís Campana; Vincent, Gregoire; Calders, Kim; Oliveira, Rafael; Huete, Alfredo; Moura, Yhasmin Mende; Nelson, Bruce; Smith, Marielle; Stark, Scott; Maeda, Eduardo (2022)
    Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet and dry seasons in Central Amazonia to show that plant phenology varies strongly across vertical strata in old-growth forests, but is sensitive to disturbances arising from forest fragmentation. In combination with continuous microclimate measurements, we find that when maximum daily temperatures reached 35 °C in the latter part of the dry season, the upper canopy of large trees in undisturbed forests lost plant material. In contrast, the understory greened up with increased light availability driven by the upper canopy loss, alongside increases in solar radiation, even during periods of drier soil and atmospheric conditions. However, persistently high temperatures in forest edges exacerbated the upper canopy losses of large trees throughout the dry season, whereas the understory in these light-rich environments was less dependent on the altered upper canopy structure. Our findings reveal a strong influence of edge effects on phenological controls in wet forests of Central Amazonia.
  • Abera, Temesgen; Heiskanen, Janne; Pellikka, Petri; Maeda, Eduardo (2020)
    Precipitation extremes have a strong influence on the exchange of energy and water between the land surface and the atmosphere. Although the Horn of Africa has faced recurrent drought and flood events in recent decades, it is still unclear how these events impact energy exchange and surface temperature across different ecosystems. Here, we analyzed the impact of precipitation extremes on spectral albedo (total shortwave, visible, and near-infrared (NIR) broadband albedos), energy balance, and surface temperature in four natural vegetation types: forest, savanna, grassland, and shrubland. We used remotely sensed observations of surface biophysical properties and climate from 2001 to 2016. Our results showed that, in forests and savannas, precipitation extremes led to divergent spectral changes in visible and NIR albedos, which cancelled each other limiting shortwave albedo changes. An exception to this pattern was observed in shrublands and grasslands, where both visible and NIR albedo increased during drought events. Given that shrublands and grasslands occupy a large fraction of the Horn of Africa (52%), our results unveil the importance of these ecosystems in driving the magnitude of shortwave radiative forcing in the region. The average regional shortwave radiative forcing during drought events (-0.64 W m(-2), SD 0.11) was around twice that of the extreme wet events (0.33 W m(-2), SD 0.09). Such shortwave forcing, however, was too small to influence the surface-atmosphere coupling. In contrast, the surface feedback through turbulent flux changes was strong across vegetation types and had a significant (P <0.05) impact on the surface temperature and net radiation anomalies, except in forests. The strongest energy exchange and surface temperature anomalies were observed over grassland and the smallest over forest, which was shown to be resilient to precipitation extremes. These results suggest that land management activities that support forest preservation, afforestation, and reforestation can help to mitigate the impact of drought through their role in modulating energy fluxes and surface temperature anomalies in the region.
  • Clifton, O.E.; Paulot, F.; Fiore, A.M.; Horowitz, L.W.; Correa, G.; Baublitz, C.B.; Fares, S.; Goded, I.; Goldstein, A.H.; Gruening, C.; Hogg, A.J.; Loubet, B.; Mammarella, I.; Munger, J.W.; Neil, L.; Stella, P.; Uddling, J.; Vesala, T.; Weng, E. (2020)
    Identifying the contributions of chemistry and transport to observed ozone pollution using regional-to-global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry-climate model - in which the atmosphere and land are coupled through dry deposition-to investigate the influence of ozone dry deposition on ozone pollution over northern midlatitudes. In our model, deposition pathways are tied to dynamic terrestrial processes, such as photosynthesis and water cycling through the canopy and soil. Small increases in winter deposition due to more process-based representation of snow and deposition to surfaces reduce hemispheric-scale ozone throughout the lower troposphere by 5-12 ppb, improving agreement with observations relative to a simulation with the standard configuration for ozone dry deposition. Declining snow cover by the end of the 21st-century tempers the previously identified influence of rising methane on winter ozone. Dynamic dry deposition changes summer surface ozone by -4 to +7 ppb. While previous studies emphasize the importance of uptake by plant stomata, new diagnostic tracking of depositional pathways reveals a widespread impact of nonstomatal deposition on ozone pollution. Daily variability in both stomatal and nonstomatal deposition contribute to daily variability in ozone pollution. Twenty-first century changes in summer deposition result from a balance among changes in individual pathways, reflecting differing responses to both high carbon dioxide (through plant physiology versus biomass accumulation) and water availability. Our findings highlight a need for constraints on the processes driving ozone dry deposition to test representation in regional-to-global models.
  • Abera, Temesgen; Pellikka, Petri; Heiskanen, Janne; Maeda, Eduardo (2020)
    Land surface temperature (LST) is affected by surface-atmosphere interaction. Yet, the degree to which surface and atmospheric factors impact the magnitude of LST trend is not well established. Here, we used surface energy balance, boosted regression tree model, and satellite observation and reanalysis data to unravel the effects of surface factors (albedo, sensible heat, latent heat, and ground heat) as well as incoming radiation (shortwave and longwave) on LST trends in East Africa (EA). Our result showed that 11% of EA was affected by significant (p <0.05) daytime annual LST trends, which exhibited both cooling of -0.19 K year(-1) (mainly in South Sudan and Sudan) and warming of 0.22 K year(-1) (mainly in Somalia and Kenya). The nighttime LST trends affected a large part of EA (31%) and were dominated by significant warming trend (0.06 K year(-1)). Influenced by contrasting daytime and nighttime LST trends, the diurnal LST range reduced in 15% of EA. The modeling result showed that latent heat flux (32%), incoming longwave radiation (30%), and shortwave radiation (23%) were stronger in explaining daytime LST trend. The effects of surface factors were stronger in both cooling and warming trends, whereas atmospheric factors had stronger control only on surface cooling trends. These results indicate the differential control of surface and atmospheric factors on warming and cooling trends, highlighting the importance of considering both factors for accurate evaluation of the LST trends in the future.
  • Mäkela, Jarmo; Knauer, Juergen; Aurela, Mika; Black, Andrew; Heimann, Martin; Kobayashi, Hideki; Lohila, Annalea; Mammarella, Ivan; Margolis, Hank; Markkanen, Tiina; Susiluoto, Jouni; Thum, Tea; Viskari, Toni; Zaehle, Soenke; Aalto, Tuula (2019)
    We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal values were estimated by a simple stochastic optimisation algorithm. The model was constrained with in situ observations of evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation. The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This modification enabled the model to correctly reproduce the springtime increase in GPP for all conifer sites used in this study. Overall, the calibration and model modifications improved the coefficient of determination and the model bias for GPP with all stomatal conductance formulations. However, only the coefficient of determination was clearly improved for ET. The optimisation resulted in best performance by the Bethy, Ball-Berry, and the Friend and Kiang stomatal conductance models. We also optimised the model during a drought event at a Finnish Scots pine forest site. This optimisation improved the model behaviour but resulted in significant changes to the parameter values except for the unified stomatal optimisation model (USO). Interestingly, the USO demonstrated the best performance during this event.
  • Bechtold, M.; De Lannoy, G. J. M.; Koster, R. D.; Reichle, R. H.; Mahanama, S. P.; Bleuten, W.; Bourgault, M. A.; Brümmer, C.; Burdun; Desai, A. R.; Devito, K.; Grünwald, T.; Grygoruk, M.; Humphreys, E. R.; Klatt, J.; Kurbatova, J.; Lohila, A.; Munir, T. M.; Nilsson, M. B.; Price, J. S.; Röhl, M.; Schneider, A.; Tiemeyer, B. (2019)
    Peatlands are poorly represented in global Earth system modeling frameworks. Here we add a peatland-specific land surface hydrology module (PEAT-CLSM) to the Catchment Land Surface Model (CLSM) of the NASA Goddard Earth Observing System (GEOS) framework. The amended TOPMODEL approach of the original CLSM that uses topography characteristics to model catchment processes is discarded, and a peatland-specific model concept is realized in its place. To facilitate its utilization in operational GEOS efforts, PEAT-CLSM uses the basic structure of CLSM and the same global input data. Parameters used in PEAT-CLSM are based on literature data. A suite of CLSM and PEAT-CLSM simulations for peatland areas between 40 degrees N and 75 degrees N is presented and evaluated against a newly compiled data set of groundwater table depth and eddy covariance observations of latent and sensible heat fluxes in natural and seminatural peatlands. CLSM's simulated groundwater tables are too deep and variable, whereas PEAT-CLSM simulates a mean groundwater table depth of -0.20 m (snow-free unfrozen period) with moderate temporal fluctuations (standard deviation of 0.10 m), in significantly better agreement with in situ observations. Relative to an operational CLSM version that simply includes peat as a soil class, the temporal correlation coefficient is increased on average by 0.16 and reaches 0.64 for bogs and 0.66 for fens when driven with global atmospheric forcing data. In PEAT-CLSM, runoff is increased on average by 38% and evapotranspiration is reduced by 19%. The evapotranspiration reduction constitutes a significant improvement relative to eddy covariance measurements.
  • Xiao, Mingzhong; Yu, Zhongbo; Kong, Dongdong; Gu, Xihui; Mammarella, Ivan; Montagnani, Leonardo; Arain, M. Altaf; Merbold, Lutz; Magliulo, Vincenzo; Lohila, Annalea; Buchmann, Nina; Wolf, Sebastian; Gharun, Mana; Hörtnagl, Lukas; Beringer, Jason; Gioli, Beniamino (2020)
    Terrestrial evapotranspiration (ET) is thermodynamically expected to increase with increasing atmospheric temperature; however, the actual constraints on the intensification of ET remain uncertain due to a lack of direct observations. Based on the FLUXNET2015 Dataset, we found that relative humidity (RH) is a more important driver of ET than temperature. While actual ET decrease at reduced RH, potential ET increases, consistently with the complementary relationship (CR) framework stating that the fraction of energy not used for actual ET is dissipated as increased sensible heat flux that in turn increases potential ET. In this study, we proposed an improved CR formulation requiring no parameter calibration and assessed its reliability in estimating ET both at site-level with the FLUXNET2015 Dataset and at basin-level. Using the ERA-Interim meteorological dataset for 1979-2017 to calculate ET, we found that the global terrestrial ET showed an increasing trend until 1998, while the trend started to decline afterwards. Such decline was largely associated with a reduced RH, inducing water stress conditions that triggered stomatal closure to conserve water. For the first time, this study quantified the global-scale implications of changes in RH on terrestrial ET, indicating that the temperature-driven acceleration of the terrestrial water cycle will be likely constrained by terrestrial vegetation feedbacks.
  • Dianatmanesh, Marziye; Kazemeini, Seyed A.; Bahrani, Mohammad J.; Shakeri, Ehsan; Alinia, Mozhgan; Amjad, Syeda F.; Mansoora, Nida; Poczai, Peter; Lalarukh, Irfana; Abbas, Mohamed H. H.; Abdelhafez, Ahmed A.; Hamed, Mahdy H. (2022)
    Incorporation of crop residues into agricultural system has become a worldwide efficient practice for enhancing crop production. The main objectives of this experiment was to investigate the major role of incorporating wheat (Triticum aestivum L.) residues and nitrogen (N) fertilizers rates under different water requirements (WR) on growth, seed yield and yield components of common bean (Phaseolus vulgaris L.). The results showed that seed yield under 80% WR in retained crop residue plots was & SIM;11% higher than WR treatment with no residue incorporation. Seed yield was not significantly different between residue retention and removal treatments in 2016, whereas it was higher (12% and 17%) under residue retained plots compared to removed ones in subsequent years. Seed yields responded to N up to 170 and 225 kg ha(-1) in removed and retained residue treatments, respectively in 2017 and 2018. Annual increment of seed yield in residue retained plots (36%) was 2.11 times higher than the residue removed ones (17%). There was higher soil N content in 50% residue retention with 225 kg N ha(-1) under both water deficit treatments in all years. The highest soil organic carbon (SOC) was achieved with normal irrigation in retained residue plots with 225 kg N ha(-1) in all years. Overall, wheat residue incorporation into the soil and N-supply substantially contributed to counteracting yield declines of common bean under water deficit conditions.& nbsp;(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (