Browsing by Subject "SOLAR-WIND"

Sort by: Order: Results:

Now showing items 1-20 of 38
  • Turc, L.; Fontaine, D.; Savoini, P.; Kilpua, E. K. J. (2014)
  • Juusola, Liisa; Pfau-Kempf, Yann; Ganse, Urs; Battarbee, Markus; Brito, Thiago; Grandin, Maxime; Turc, Lucile; Palmroth, Minna (2018)
    The origin of the flapping motions of the current sheet in the Earth's magnetotail is one of the most interesting questions of magnetospheric dynamics yet to be solved. We have used a polar plane simulation from the global hybrid-Vlasov model Vlasiator to study the characteristics and source of current sheet flapping in the center of the magnetotail. The characteristics of the simulated signatures agree with observations reported in the literature. The flapping is initiated by a hemispherically asymmetric magnetopause perturbation, created by subsolar magnetopause reconnection, that is capable of displacing the tail current sheet from its nominal position. The current sheet displacement propagates downtail at the same pace as the driving magnetopause perturbation. The initial current sheet displacement launches a standing magnetosonic wave within the tail resonance cavity. The travel time of the wave within the local cavity determines the period of the subsequent flapping signatures. Compression of the tail lobes due to added flux affects the cross-sectional width of the resonance cavity as well as the magnetosonic speed within the cavity. These in turn modify the wave travel time and flapping period. The compression of the resonance cavity may also provide additional energy to the standing wave, which may lead to strengthening of the flapping signature. It may be possible that the suggested mechanism could act as a source of kink-like waves that have been observed to be emitted from the center of the tail and to propagate toward the dawn and dusk flanks.
  • Andreeova, K.; Juusola, L.; Kilpua, E. K. J.; Koskinen, H. E. J. (2014)
  • Andreeova, K.; Kilpua, E. K. J.; Hietala, H.; Koskinen, H. E. J.; Isavnin, A.; Vainio, R. (2013)
    In this paper we have analyzed a substructure found within a leading part of a north–south-oriented magnetic cloud (MC) observed on 3–4 September 2008 in the near-Earth solar wind by multiple spacecraft (ACE, Wind, THEMIS B and C). The MC was preceded by a stream interface (SI) and followed by a high-speed stream (HSS). The identified substructure featured a strong depletion of suprathermal halo electrons and showed distinct magnetic field and plasma signatures. It occurred where suprathermal electron flow within a cloud changed from bidirectional to unidirectional, indicating change in the field line connectivity to the Sun. We found that the substructure maintained roughly its integrity from the first Lagrangian point to the vicinity of the Earth's bow shock in the front edge of the MC, but revealed small changes in the structure which could be explained either by temporal evolution or spatial configuration of the spacecraft.
  • Plaschke, F.; Hietala, H.; Angelopoulos, V. (2013)
  • Blanco-Cano, Xochitl; Battarbee, Markus; Turc, Lucile; Dimmock, Andrew P.; Kilpua, Emilia K. J.; Hoilijoki, Sanni; Ganse, Urs; Sibeck, David G.; Cassak, Paul A.; Fear, Robert C.; Järvinen, Riku; Juusola, Liisa; Pfau-Kempf, Yann; Vainio, Rami; Palmroth, Minna (2018)
    In this paper we present the first identification of foreshock cavitons and the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator global magnetospheric hybrid-Vlasov simulation code. In agreement with previous studies we show that cavitons evolve into SHFAs. In the presented run, this occurs very near the bow shock. We report on SHFAs surviving the shock crossing into the down-stream region and show that the interaction of SHFAs with the bow shock can lead to the formation of a magnetosheath cavity, previously identified in observations and simulations. We report on the first identification of long-term local weakening and erosion of the bow shock, associated with a region of increased foreshock SHFA and caviton formation, and repeated shock crossings by them. We show that SHFAs are linked to an increase in suprathermal particle pitch-angle spreads. The realistic length scales in our simulation allow us to present a statistical study of global caviton and SHFA size distributions, and their comparable size distributions support the theory that SHFAs are formed from cavitons. Virtual spacecraft observations are shown to be in good agreement with observational studies.
  • Harrison, R. A.; Davies, J. A.; Barnes, D.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstril, D. (2018)
    We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA's twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters - namely occurrence frequency, central position angle (PA) and PA span - derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate outwards.
  • Barnes, D.; Davies, J. A.; Harrison, R. A.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstrcil, D. (2019)
    Recent observations with the Heliospheric Imagers (HIs) onboard the twin NASA Solar Terrestrial Relations Observatory (STEREO) spacecraft have provided unprecedented observations of a large number of coronal mass ejections (CMEs) in the inner heliosphere. In this article we discuss the generation of the HIGeoCAT CME catalogue and perform a statistical analysis of its events. The catalogue was generated as part of the EU FP7 HELCATS (Heliospheric Cataloguing, Analysis and Techniques Service) project ( It is created by generating time/elongation maps for CMEs using observations from the inner (HI-1) and outer (HI-2) cameras along a position angle close to the CME apex. Next, we apply single-spacecraft geometric-fitting techniques to determine the kinematic properties of these CMEs, including their speeds, propagation directions, and launch times. The catalogue contains a total of 1455 events (801 from STEREO-A and 654 from STEREO-B) from April 2007 to the end of August 2017. We perform a statistical analysis of the properties of CMEs in HIGeoCAT and compare the results with those from the Large Angle Spectrometric Coronagraph (LASCO) CDAW catalogues (Yashiro etal.J.Geophys. Res. Space Phys.109, A07105, 2004) and the COR-2 catalogue of Vourlidas etal. (Astrophys. J.838, 141, 2004) during the same period. We find that the distributions of both speeds and latitudes for the HIGeoCAT CMEs correlate with the sunspot number over the solar cycle. We also find that the HI-derived CME speed distributions are generally consistent with coronagraph catalogues over the solar cycle, albeit with greater absolute speeds due to the differing methods with which each is derived.
  • Linker, Jon A.; Heinemann, Stephan G.; Temmer, Manuela; Owens, Mathew J.; Caplan, Ronald M.; Arge, Charles N.; Asvestari, Eleanna; Delouille, Veronique; Downs, Cooper; Hofmeister, Stefan J.; Jebaraj, Immanuel C.; Madjarska, Maria S.; Pinto, Rui F.; Pomoell, Jens; Samara, Evangelia; Scolini, Camilla; Vrsnak, Bojan (2021)
    Many scientists use coronal hole (CH) detections to infer open magnetic flux. Detection techniques differ in the areas that they assign as open, and may obtain different values for the open magnetic flux. We characterize the uncertainties of these methods, by applying six different detection methods to deduce the area and open flux of a near-disk center CH observed on 2010 September 19, and applying a single method to five different EUV filtergrams for this CH. Open flux was calculated using five different magnetic maps. The standard deviation (interpreted as the uncertainty) in the open flux estimate for this CH approximate to 26%. However, including the variability of different magnetic data sources, this uncertainty almost doubles to 45%. We use two of the methods to characterize the area and open flux for all CHs in this time period. We find that the open flux is greatly underestimated compared to values inferred from in situ measurements (by 2.2-4 times). We also test our detection techniques on simulated emission images from a thermodynamic MHD model of the solar corona. We find that the methods overestimate the area and open flux in the simulated CH, but the average error in the flux is only about 7%. The full-Sun detections on the simulated corona underestimate the model open flux, but by factors well below what is needed to account for the missing flux in the observations. Under-detection of open flux in coronal holes likely contributes to the recognized deficit in solar open flux, but is unlikely to resolve it.
  • Palmerio, E.; Kilpua, E. K. J.; Möstl, C.; Bothmer, V.; James, A. W.; Green, L. M.; Isavnin, A.; Davies, J. A.; Harrison, R. A. (2018)
    Predicting the magnetic field within an Earth-directed coronal mass ejection (CME) well before its arrival at Earth is one of the most important issues in space weather research. In this article, we compare the intrinsic flux rope type, that is, the CME orientation and handedness during eruption, with the in situ flux rope type for 20 CME events that have been uniquely linked from Sun to Earth through heliospheric imaging. Our study shows that the intrinsic flux rope type can be estimated for CMEs originating from different source regions using a combination of indirect proxies. We find that only 20% of the events studied match strictly between the intrinsic and in situ flux rope types. The percentage rises to 55% when intermediate cases (where the orientation at the Sun and/or in situ is close to 45 degrees) are considered as a match. We also determine the change in the flux rope tilt angle between the Sun and Earth. For the majority of the cases, the rotation is several tens of degrees, while 35% of the events change by more than 90 degrees. While occasionally the intrinsic flux rope type is a good proxy for the magnetic structure impacting Earth, our study highlights the importance of capturing the CME evolution for space weather forecasting purposes. Moreover, we emphasize that determination of the intrinsic flux rope type is a crucial input for CME forecasting models. Plain Language Summary Coronal mass ejections (CMEs) are huge eruptions from the Sun that can cause myriad of space weather effects at Earth. The ability of a CME to drive a geomagnetic storm is given largely by how its magnetic field is configured. Predicting the magnetic structure well before CME arrival at Earth is one of the major goals in space weather forecasting. Palmerio et al. (2018) study 20 CMEs observed both at the Sun and at Earth. They use observations of the solar disc to determine the magnetic structure at the Sun and then compare it with the magnetic structure estimated via magnetic field measurements near Earth. They report that the magnetic structures match closely only in 20% of the events studied. They also estimate the orientations of the CME axes at the Sun and at Earth. They find that 65% of the events change their orientations by less than 90 degrees. They conclude that knowledge of the CME magnetic structure at the Sun is an important factor in space weather forecasting, but the CME evolution after eruption has to be taken into account in order to improve current predictions.
  • Kilpua, Emilia; Juusola, Liisa; Grandin, Maxime; Kero, Antti; Dubyagin, Stepan; Partamies, Noora; Osmane, Adnane; George, Harriet; Kalliokoski, Milla; Raita, Tero; Asikainen, Timo; Palmroth, Minna (2020)
    We study here energetic-electron (E > 30 keV) precipitation using cosmic noise absorption (CNA) during the sheath and ejecta structures of 61 interplanetary coronal mass ejections (ICMEs) observed in the near-Earth solar wind between 1997 and 2012. The data come from the Finnish riometer (relative ionospheric opacity meter) chain from stations extending from auroral (IVA, 65.2 degrees N geomagnetic latitude; MLAT) to subauroral (JYV, 59.0 degrees N MLAT) latitudes. We find that sheaths and ejecta lead frequently to enhanced CNA (> 0.5 dB) both at auroral and subauroral latitudes, although the CNA magnitudes stay relatively low (medians around 1 dB). Due to their longer duration, ejecta typically lead to more sustained enhanced CNA periods (on average 6-7 h), but the sheaths and ejecta were found to be equally effective in inducing enhanced CNA when relative-occurrence frequency and CNA magnitude were considered. Only at the lowest-MLAT station, JYV, ejecta were more effective in causing enhanced CNA. Some clear trends of magnetic local time (MLT) and differences between the ejecta and sheaths were found. The occurrence frequency and magnitude of CNA activity was lowest close to midnight, while it peaked for the sheaths in the morning and afternoon/evening sectors and for the ejecta in the morning and noon sectors. These differences may reflect differences in typical MLT distributions of wave modes that precipitate substorm-injected and trapped radiation belt electrons during the sheaths and ejecta. Our study also emphasizes the importance of substorms and magnetospheric ultra-low-frequency (ULF) waves for enhanced CNA.
  • Sarris, Theodoros E.; Talaat, Elsayed R.; Palmroth, Minna; Dandouras, Iannis; Armandillo, Errico; Kervalishvili, Guram; Buchert, Stephan; Tourgaidis, Stylianos; Malaspina, David M.; Jaynes, Allison N.; Paschalidis, Nikolaos; Sample, John; Halekas, Jasper; Doornbos, Eelco; Lappas, Vaios; Jorgensen, Therese Moretto; Stolle, Claudia; Clilverd, Mark; Wu, Qian; Sandberg, Ingmar; Pirnaris, Panagiotis; Aikio, Anita (2020)
    The Daedalus mission has been proposed to the European Space Agency (ESA) in response to the call for ideas for the Earth Observation program's 10th Earth Explorer. It was selected in 2018 as one of three candidates for a phase-0 feasibility study. The goal of the mission is to quantify the key electrodynamic processes that determine the structure and composition of the upper atmosphere, the gateway between the Earth's atmosphere and space. An innovative preliminary mission design allows Daedalus to access electrodynamics processes down to altitudes of 150 km and below. Daedalus will perform in situ measurements of plasma density and temperature, ion drift, neutral density and wind, ion and neutral composition, electric and magnetic fields, and precipitating particles. These measurements will unambiguously quantify the amount of energy deposited in the upper atmosphere during active and quiet geomagnetic times via Joule heating and energetic particle precipitation, estimates of which currently vary by orders of magnitude between models and observation methods. An innovation of the Daedalus preliminary mission concept is that it includes the release of subsatellites at low altitudes: combined with the main spacecraft, these subsatellites will provide multipoint measurements throughout the lower thermosphereionosphere (LTI) region, down to altitudes below 120 km, in the heart of the most under-explored region in the Earth's atmosphere. This paper describes Daedalus as originally proposed to the ESA.
  • MacLennan, Eric; Toliou, Athanasia; Granvik, Mikael (2021)
    The near-Earth objects (NEOs) (3200) Phaethon and (155140) 2005 UD are thought to share a common origin, with the former exhibiting dust activity at perihelion that is thought to directly supply the Geminid meteor stream. Both of these objects currently have very small perihelion distances (0.140 au and 0.163 au for Phaethon and 2005 UD, respectively), which results in them having perihelion temperatures around 1000 K. A comparison between NEO population models to discovery statistics suggests that low-perihelion objects are destroyed over time by a, possibly temperature-dependent, mechanism that is efficient at heliocentric distances less than 0.3 au. By implication, the current activity from Phaethon is linked to the destruction mechanism of NEOs close to the Sun. We model the past thermal characteristics of Phaethon and 2005 UD using a combination of a thermophysical model (TPM) and orbital integrations of each object. Temperature characteristics such as maximum daily temperature, maximum thermal gradient, and temperature at different depths are extracted from the model, which is run for a predefined set of semi-major axis and eccentricity values. Next, dynamical integrations of orbital clones of Phaethon and 2005 UD are used to estimate the past orbital elements of each object. These dynamical results are then combined with the temperature characteristics to model the past evolution of thermal characteristics such as maximum (and minimum) surface temperature and thermal gradient. The orbital histories of Phaethon and 2005 UD are characterized by cyclic changes in.., resulting in perihelia values periodically shifting between present-day values and 0.3 au. Currently, Phaethon is experiencing relatively large degrees of heating when compared to the recent 20, 000 yr. We find that the subsurface temperatures are too large over this timescale for water ice to be stable, unless actively supplied somehow. The near-surface thermal gradients strongly suggest that thermal fracturing may be very effective at breaking down and ejecting dust particles. Observations by the DESTINY+ flyby mission will provide important constraints on the mechanics of dust-loss from Phaethon and, potentially, reveal signs of activity from 2005 UD. In addition to simulating the recent dynamical evolution of these objects, we use orbital integrations that start from the Main Belt to assess their early dynamical evolution (origin and delivery mechanism). We find that dwarf planet (2) Pallas is unlikely to be the parent body for Phaethon and 2005 UD, and it is more likely that the source is in the inner part of the asteroid belt in the families of, e.g., (329) Svea or (142) Polana.
  • Myllys, M.; Henri, P.; Vallieres, X.; Gilet, N.; Nilsson, H.; Palmerio, E.; Turc, L.; Wellbrock, A.; Goldstein, R.; Witasse, O. (2021)
    Context. The Mutual Impedance Probe (RPC-MIP) carried by the Rosetta spacecraft monitored both the plasma density and the electric field in the close environment of comet 67P/Churyumov-Gerasimenko (67P), as the instrument was operating alternatively in two main modes: active and passive. The active mode is used primarily to perform plasma density measurements, while the passive mode enables the instrument to work as a wave analyzer. Aims. We are reporting electric field emissions at the plasma frequency near comet 67P observed by RPC-MIP passive mode. The electric field emissions are related to Langmuir waves within the cometary ionized environment. In addition, this study gives feedback on the density measurement capability of RPC-MIP in the presence of cold electrons. Methods. We studied the occurrence rate of the electric field emissions as well as their dependence on solar wind structures like stream interaction regions (SIRs) and coronal mass ejections (CMEs). Results. We are showing that strong electric field emissions at the plasma frequency near 67P were present sporadically throughout the period when Rosetta was escorting the comet, without being continuous, as the occurrence rate is reported to be of about 1% of all the measured RPC-MIP passive spectra showing strong electric field emissions. The Langmuir wave activity monitored by RPC-MIP showed measurable enhancements during SIR or CME interactions and near perihelion. Conclusions. According to our results, Langmuir waves are a common feature at 67P during the passage of SIRs. Comparing the plasma frequency given by the RPC-MIP passive mode during Langmuir wave periods with the RPC-MIP active mode observations, we conclude that the measurement accuracy of RPC-MIP depends on the operational submode when the cold electron component dominates the electron density.
  • Wilson, Lynn B.; Chen, Li-Jen; Wang, Shan; Schwartz, Steven J.; Turner, Drew L.; Stevens, Michael L.; Kasper, Justin C.; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart D.; Pulupa, Marc P.; Salem, Chadi S.; Goodrich, Katherine A. (2019)
    Analyses of 15,314 electron velocity distribution functions (VDFs) within +/- 2 hr of 52 interplanetary (IP) shocks observed by the Wind spacecraft near 1 au are introduced. The electron VDFs are fit to the sum of three model functions for the cold dense core, hot tenuous halo, and field-aligned beam/strahl component. The best results were found by modeling the core as either a bi-kappa or a symmetric (or asymmetric) bi-self-similar VDF, while both the halo and beam/strahl components were best fit to bi-kappa VDF. This is the first statistical study to show that the core electron distribution is better fit to a self-similar VDF than a bi-Maxwellian under all conditions. The self-similar distribution deviation from a Maxwellian is a measure of inelasticity in particle scattering from waves and/or turbulence. The ranges of values defined by the lower and upper quartiles for the kappa exponents are k(ec) similar to 5.40-10.2 for the core, k(eh) similar to 3.58-5.34 for the halo, and k(eb) similar to 3.40-5.16 for the beam/strahl. The lower-to-upper quartile range of symmetric bi-self-similar core exponents is s(ec) similar to 2.00-2.04, and those of asymmetric bi-self-similar core exponents are p(ec) similar to 2.20-4.00 for the parallel exponent and q(ec) similar to 2.00-2.46 for the perpendicular exponent. The nuanced details of the fit procedure and description of resulting data product are also presented. The statistics and detailed analysis of the results are presented in Paper II and Paper III of this three-part study.
  • Wilson, Lynn B.; Chen, Li-Jen; Wang, Shan; Schwartz, Steven J.; Turner, Drew L.; Stevens, Michael L.; Kasper, Justin C.; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart D.; Pulupa, Marc P.; Salem, Chadi S.; Goodrich, Katherine A. (2019)
    A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within +/- 2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future work. Given the large statistics in this investigation, the beam/strahl fit results in the upstream are now the most comprehensive attempt to parameterize the beam/strahl electron velocity moments in the ambient solar wind. The median density, temperature, beta, and temperature anisotropy values for the core(halo)[beam/strahl] components, with subscripts ec(eh)[eb], of all fit results, respectively, are n(ec(h)[b]) similar to 11.3(0.36)[0.17] cm(-3), T-ec(h)[b],T-tot similar to 14.6(48.4)[40.2] eV, beta(ec(h)[b],tot) similar to 0.93(0.11)[0.05], and Alpha(ec(h)[b]) similar to 0.98(1.03)[0.93]. This work will also serve as a 1 au baseline and reference for missions like Parker Solar Probe and Solar Orbiter.
  • Wilson, Lynn B.; Chen, Li-Jen; Wang, Shan; Schwartz, Steven J.; Turner, Drew L.; Stevens, Michael L.; Kasper, Justin C.; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart D.; Pulupa, Marc P.; Salem, Chadi S.; Goodrich, Katherine A. (2020)
    An analysis of model fit results of 15,210 electron velocity distribution functions (VDFs), observed within 2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented as the third and final part on electron VDFs near IP shocks. The core electrons and protons dominate in the magnitude and change in the partial-to-total thermal pressure ratio, with the core electrons often gaining as much or more than the protons. Only a moderate positive correlation is observed between the electron temperature and the kinetic energy change across the shock, while weaker, if any, correlations were found with any other macroscopic shock parameter. No VDF parameter correlated with the shock normal angle. The electron VDF evolves from a narrowly peaked core with flaring suprathermal tails in the upstream to either a slightly hotter core with steeper tails or much hotter flattop core with even steeper tails downstream of the weaker and strongest shocks, respectively. Both quasi-static and fluctuating fields are examined as possible mechanisms modifying the VDF, but neither is sufficient alone. For instance, flattop VDFs can be generated by nonlinear ion acoustic wave stochastic acceleration (i.e., inelastic collisions), while other work suggested they result from the combination of quasi-static and fluctuating fields. This three-part study shows that not only are these systems not thermodynamic in nature; even kinetic models may require modification to include things like inelastic collision operators to properly model electron VDF evolution across shocks or in the solar wind.
  • Rollett, T.; Moestl, C.; Isavnin, A.; Davies, J. A.; Kubicka, M.; Amerstorfer, U. V.; Harrison, R. A. (2016)
    In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, i.e., the assumed geometry is elliptical. Using, as input, Solar TErrestrial RElations Observatory (STEREO) heliospheric imager (HI) observations, a new elliptic conversion (ElCon) method is introduced and combined with the use of drag-based model (DBM) fitting to quantify the deceleration or acceleration experienced by CMEs during propagation. The result is then used as input for the Ellipse Evolution Model (ElEvo). Together, ElCon, DBM fitting, and ElEvo form the novel ElEvoHI forecasting utility. To demonstrate the applicability of ElEvoHI, we forecast the arrival times and speeds of 21 CMEs remotely observed from STEREO/HI and compare them to in situ arrival times and speeds at 1 AU. Compared to the commonly used STEREO/HI fitting techniques (Fixed-phi, Harmonic Mean, and Self-similar Expansion fitting), ElEvoHI improves the arrival time forecast by about 2 to +/- 6.5 hr and the arrival speed forecast by approximate to 250 to +/- 53 km s(-1), depending on the ellipse aspect ratio assumed. In particular, the remarkable improvement of the arrival speed prediction is potentially beneficial for predicting geomagnetic storm strength at Earth.
  • Moestl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D. (2018)
    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field B-z in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30 degrees and a deflection angle of 20 degrees is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.
  • Scolini, C.; Chané, E.; Pomoell, J.; Rodriguez, L.; Poedts, S. (2020)
    Predictions of the impact of coronal mass ejections (CMEs) in the heliosphere mostly rely on cone CME models, whose performances are optimized for locations in the ecliptic plane and at 1 AU (e.g., at Earth). Progresses in the exploration of the inner heliosphere, however, advocate the need to assess their performances at both higher latitudes and smaller heliocentric distances. In this work, we perform 3-D magnetohydrodynamics simulations of artificial cone CMEs using the EUropean Heliospheric FORecasting Information Asset (EUHFORIA), investigating the performances of cone models in the case of CMEs launched at high latitudes. We compare results obtained initializing CMEs using a commonly applied approximated (Euclidean) distance relation and using a proper (great circle) distance relation. Results show that initializing high-latitude CMEs using the Euclidean approximation results in a teardrop-shaped CME cross section at the model inner boundary that fails in reproducing the initial shape of high-latitude cone CMEs as a circular cross section. Modeling errors arising from the use of an inappropriate distance relation at the inner boundary eventually propagate to the heliospheric domain. Errors are most prominent in simulations of high-latitude CMEs and at the location of spacecraft at high latitudes and/or small distances from the Sun, with locations impacted by the CME flanks being the most error sensitive. This work shows that the low-latitude approximations commonly employed in cone models, if not corrected, may significantly affect CME predictions at various locations compatible with the orbit of space missions such as Parker Solar Probe, Ulysses, and Solar Orbiter.