Browsing by Subject "SPHEROIDS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vitor E.; Barbier, Michael; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph (2016)
    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono-and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models.
  • De Santis, Ilaria; Tasnadi, Ervin; Horvath, Peter; Bevilacqua, Alessandro; Piccinini, Filippo (2019)
    Featured Application The main goal of this work is to provide an overview of open-source tools available for researchers interested in estimating the volume of 3D multicellular aggregates (e.g., spheroids, organoids), besides introducing a new version of the Reconstruction and Visualization from Multiple Sections (ReViMS) tool (http://sourceforge.net/p/revims). Abstract The volume is one of the most relevant features that define the treatment of an in vivo tumour. When using cancer 3D in vitro models in pre-clinical studies, it becomes important to evaluate the macroscopic effects of drugs and radiotherapy treatments. Depending on the nature of the 3D in vitro model used, different open-source solutions can be used for measuring the volume by starting from microscope-acquired images. In this work, we introduced several open-source tools today available for estimating the volume of 3D multicellular aggregates (e.g., spheroids, organoids), also giving hints for defining the best software by analysing characteristics of 3D in vitro models and limits of the tools. Finally, using several cancer organoids imaged by a fluorescent microscope, we compared volume estimations obtained with different tools, besides presenting a new version of the Reconstruction and Visualization from Multiple Sections (ReViMS version 2.0) tool. This work aims to be the reference for researchers interested in estimating the volume of 3D multicellular aggregates through an open-source tool.