Browsing by Subject "STABILIZATION"

Sort by: Order: Results:

Now showing items 1-19 of 19
  • Valoppi, Fabio; Lahtinen, Maarit; Bhattarai, Mamata; Kirjoranta, Satu; Juntti, Venla; Peltonen, Leena; Kilpeläinen, Petri O.; Mikkonen, Kirsi S. (2019)
    With the emerging bio-based technologies, the fractionation of complex biomass is essential to obtain value-added functional molecules for material, chemical, and energy production. The refining process of biomasses often requires the use of solvents and hazardous chemicals, whose removal after fractionation decreases the eco-compatibility of the process and increases the cost and time of the refinement. Softwood extracts obtained through the environmentally friendly pressurized hot water extraction are heterogeneous mixtures rich in hemicelluloses and lignin. Here we developed a simple, fast, organic solvent-free, and sustainable method to fractionate softwood extracts using centrifugal forces. The characteristics of each obtained fraction in terms of composition, macromolecular properties (particle size, molar mass, charge), interfacial activity, and stabilization capacity were highly dependent on the centrifugal force and time applied. The hemicellulose and lignin contents in the fractions were balanced by centrifugal forces to obtain functional emulsifiers that efficiently stabilized the oil/water interface. Through fractionation of softwood extracts, we also found that both the hemicelluloses and lignin particles are involved in emulsion interface formation and stabilization. Centrifugation is a scalable concept that can be feasibly and easily introduced into the biorefinery system and used to optimize the composition of biomass fractions for targeted purposes.
  • Augustyn, Bozena; Stepien, Piotr; Poojari, Chetan; Mobarak, Edouard; Polit, Agnieszka; Wisniewska-Becker, Anna; Rog, Tomasz (2019)
    Nanodiscs are suitable tools for studies of membrane proteins (MPs) due to their ability to mimic native biological membranes, and several MP structures are solved in nanodiscs. Among the various cell membrane components, cholesterol (CHL) is known to regulate protein function and its concentration can reach up to 50 mol %. However, studies comprising cholesterol are challenging due to its hydrophobic nature, hence, nanodiscs with only a low cholesterol concentration have been studied. To overcome the problem, cholesterol analogs with high solubility in polar solutions are often used, and one of them is cholesteryl hemisuccinate (CHS). Nevertheless, in molecular dynamics (MD) simulation, this is not an obstacle. In this study, we performed MD simulations of nanodiscs containing neutral phosphatidylcholine (POPC) lipids, negatively charged phosphatidylglycerol (POPG) lipids, CHL, or negatively charged cholesterol analog, CHS. Our simulations show that CHS increases the order of lipids in nanodiscs; the effect is, however, weaker than CHL and even smaller in nanodiscs. Furthermore, CHS gathered around scaffold proteins while cholesterol was uniformly distributed in the nanodiscs. Thus, nanodiscs with CHS are heterogeneous and not equivalent to nanodiscs with CHL. Finally, we also observed the increased concentration of POPG near the scaffold proteins, driven by electrostatic interactions. The MD results are experimentally validated using electron paramagnetic resonance spectroscopy. These results show that nanodiscs are, in fact, complex structures not easily comparable with planar lipid bilayers.
  • Ferreira Lemos, Monica; Engeström, Yrjö (2018)
    The purpose of this paper is to analyze how a new concept of educational management was produced in a formative intervention project for manager educators in the city of São Paulo, Brazil. Drawing on Vygotsky and Leontiev, we asked: What is the nature of the interplay between participants’ personal senses and the societal meaning of educational management in the process of collective concept formation? The collective concept formation discourse was analyzed in three steps: initial explication of a raw object, clashes in further elaboration of the raw object, and stabilization of the new concept. The raw object reproduced a taken-for-granted meaning of educational management as promoting conditions for teaching and learning. The clashes occurred mainly between the notion of management for teaching and learning and the notion of management for teaching and learning for community transformation. The stabilization was achieved by a vote and defined the purpose of educational management seemingly as it was already formulated in the raw object. However, this stabilization was temporary and involved attempts to transcend the opposition between the two alternative definitions. Thus, the actual meaning and concept of educational management remained open to further steps. In this paper, we report on how manager educators engage in a collective effort to conceptualize educational management. Our article proposes and tests a new theoretical framework for studying changes in educational management as processes of collective concept formation.
  • Bhattarai, Mamata; Sulaeva, Irina; Pitkänen, Leena; Kontro, Inkeri; Tenkanen, Maija; Potthast, Antje; Mikkonen, Kirsi S. (2020)
    Development of a sustainable bioeconomy requires valorization of renewable resources, such as wood hemicelluloses. The intra- and inter-molecular associations of hemicelluloses within themselves or with other wood components can result in complex macromolecular features. These features exhibit functionality as hydrocolloids, however macromolecular characterization of these heterogeneous materials are challenging using conventional techniques such as size-exclusion chromatography. We studied galactoglucomannans (GGM) -rich softwood extracts at two grades of purity—as crude extract and after ethanol-precipitation. Asymmetrical flow field-flow fractionation (AF4) was optimized and utilized to fractionate size classes in GGM extracts, and subsequent characterization was performed with light scattering and microscopy techniques. Both GGM extracts contained polysaccharides of around 10,000 g/mol molar mass, and colloidal assemblies and/or particles in sub-micron size range. The optimized AF4 method facilitates the characterization of complex biomass-derived carbohydrates without pre-fractionation, and provides valuable understanding of their unique macromolecular features for their future application in food, pharmaceuticals, and cosmetics.
  • Hyytiäinen, Heli K.; Mölsä, Sari H.; Junnila, Jouni J. T.; Laitinen-Vapaavuori, Outi M.; Hielm-Björkman, Anna K. (2018)
    This study aimed at developing a quantitative testing battery for dogs' stifle functionality, as, unlike in human medicine, currently none is available in the veterinary field. Forty-three dogs with surgically treated unilateral cranial cruciate ligament rupture and 21 dogs with no known musculoskeletal problems were included. Eight previously studied tests: compensation in sitting and lying positions, symmetry of thrust in hindlimbs when rising from lying and sitting, static weight bearing, stifle flexion and extension and muscle mass symmetry, were summed into the Finnish Canine Stifle Index (FCSI). Sensitivities and specificities of the dichotomised FCSI score were calculated against orthopaedic examination, radiological and force platform analysis and a conclusive assessment (combination of previous). One-way analysis of variance (ANOVA)was used to evaluate FCSI score differences between the groups. Cronbach's alpha for internal consistency was calculated. The range of the index score was 0-263, with a proposed cut-off value of 60 between 'adequate' and 'compromised' functional performance. In comparison to the conclusive assessment, the sensitivity and specificity of the FCSI were 90 per cent and 90.5 per cent, respectively. Cronbach's alpha for internal reliability of the FCSI score was 0.727. An estimate of the surgically treated and control dogs' FCSI scores were 105 (95 per cent CI 93 to 116) and 20 (95 per cent CI 4 to 37), respectively. The difference between the groups was significant (P
  • Sheehy, Jatta; Nuutinen, Visa; Six, Johan; Palojarvi, Ansa; Knuutila, Ossi; Kaseva, Janne; Regina, Kristiina (2019)
    By processing large quantities of crop residues, earthworms enhance the mineralization of organic matter but have also been shown to stabilize soil organic carbon (SOC) into soil fractions like microaggregates (53-250 mu m) within macroaggregates (> 250 mu m) especially in no-till soils. Our objective was to find direct evidence on the impact of an anecic, soil surface-feeding earthworm, Lumbricus terrestris L., on the redistribution of SOC and soil nitrogen (N) into macroaggregate-occluded soil fractions of boreal soils. We sampled soil (0-5 cm depth) from the middens of L. terrestris (mounds of collected residue and surface casts at the openings of its permanent burrows) and the adjacent non-midden (bulk) soil at three no-till sites in southern Finland: two clayey sites (sites 1-2) and one coarse textured site (site 3). Compared to bulk soil, the soil in L. terrestris middens featured general increase in aggregate size and content of SOC and N within the large macroaggregates (> 2000 mu m) at the clayey sites. The microaggregates within the large macroaggregates had accumulated more SOC and N in the midden soil especially at site 1 where 99% of the difference in total SOC between midden and bulk soil was associated with this type of SOC stabilization. At site 2, the increase in SOC found in the large macroaggregates was counteracted by a decrease in SOC in microaggregates within the small macroaggregates (250-2000 mu m). No differences in SOC stored in soil fractions were found between midden and non-midden soil at the coarse soil site 3 with higher top soil decomposition rate compared to sites 1 and 2. Across the study sites, the total amount of SOC was 6% higher in midden soil compared to the bulk soil. These results suggest L. terrestris mediates the storage of SOC and N into better protected soil fractions in clay soils under boreal conditions.
  • Morais de Carvalho, Danila; Lahtinen, Maarit; Lawoko, Martin; Mikkonen, Kirsi S. (2020)
    Lignin-carbohydrate complexes (LCCs) are hybrid structures containing covalently linked moieties of lignin and carbohydrates. The structure and behavior of LCCs affect both industrial processes and practical applications of lignocellulosic biomass. However, the identification of phenylglycoside, benzylether, and gamma (gamma)-ester LCC bonds in lignocellulosic biomass is limited due to their relatively low abundance compared to plain carbohydrate and lignin structures. Herein, we enriched the LCC bonds in softwood galactoglucomannan (GGM)-rich extract fractionated by (1) a solvent (ethanol), (2) enzymes, and (3) physical techniques. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy analysis was used to identify the LCC bonds. Phenylglycoside and benzylether bonds were concentrated in the ethanol-soluble GGM fractions. A benzylether bond was concentrated into GGM fractions containing larger molecules (>500 Da) through physical techniques. The gamma-ester bond was identified in all studied GGM fractions, which is explained by its stability and possible presence in residual xylan. In summary, we demonstrated the potential of the suggested techniques to enrich LCC bonds in softwood extract and improve LCC identification. Such techniques may also enable further studies on the structure and functionality of LCC bonds and open new prospects in the engineering of biomolecules.
  • Bhattarai, Mamata; Pitkänen, Leena M.; Kitunen, Veikko; Korpinen, Risto; Ilvesniemi, Hannu; Kilpeläinen, Petri O.; Lehtonen, Mari I.; Mikkonen, Kirsi S. (2019)
    For a sustainable food chain, the demand for plant-based, functional, and cost-effective food hydrocolloids is on a high-rise. Hemicelluloses from the renewable lignocellulosic biomass are available in abundance from side-streams of the forestry industry to fulfill this demand. Their effective valorization requires a safe, economic extraction method that can be up-scaled to an industrial scale and, simultaneously, understanding of their functionality to develop applications. In this study, an aqueous-based extraction method, pressurized hot water extraction (PHWE) of spruce saw meal was used to obtain galactoglucomannans (GGM), "spruce gum". Ethanol precipitation was performed to remove non-polysaccharide extractives such as free phenolic compounds, and the emulsion component ratio-dependent interfacial saturation capacity of the remaining purified fraction was studied to understand its functionality. GGM resulted in good to excellent emulsification and stabilization of oil-in-water emulsions and exhibited adsorption at the oil droplet interface, which depended on the amount of oil and droplet size of emulsions. The adsorbed GGM content was determined by gas chromatography after acid methanolysis, and their macromolecular characteristics were studied by size-exclusion chromatography. At GGM to oil ratios 2, 1, and 0.4, stable emulsions with predicted several months of shelf life at room temperature were achieved. The results indicated mechanisms affecting the physical stabilization and breakdown of emulsions containing spruce gum, a novel sustainable hydrocolloid. (C) 2018 Elsevier Ltd. All rights reserved.
  • Mikkila, Joona; Trogen, Mikaela; Koivu, Klaus A. Y.; Kontro, Jussi; Kuuskeri, Jaana; Maltari, Riku; Dekere, Zane; Kemell, Marianna; Makela, Miia R.; Nousiainen, Paula A.; Hummel, Michael; Sipila, Jussi; Hilden, Kristiina (2020)
    The kraft lignin's low molecular weight and too high hydroxyl content hinder its application in bio-based carbon fibers. In this study, we were able to polymerize kraft lignin and reduce the amount of hydroxyl groups by incubating it with the white-rot fungus Obba rivulosa. Enzymatic radical oxidation reactions were hypothesized to induce condensation of lignin, which increased the amount of aromatic rings connected by carbon-carbon bonds. This modification is assumed to be beneficial when aiming for graphite materials such as carbon fibers. Furthermore, the ratio of remaining aliphatic hydroxyls to phenolic hydroxyls was increased, making the structure more favorable for carbon fiber production. When the modified lignin was mixed together with cellulose, the mixture could be spun into intact precursor fibers by using dry-jet wet spinning. The modified lignin leaked less to the spin bath compared with the unmodified lignin starting material, making the recycling of spin-bath solvents easier. The stronger incorporation of modified lignin in the precursor fibers was confirmed by composition analysis, thermogravimetry, and mechanical testing. This work shows how white-rot fungal treatment can be used to modify the structure of lignin to be more favorable for the production of bio-based fiber materials.
  • DIII-D Team; JET Contributors; Kotschenreuther, M.; Ahlgren, T.; Aho-Mantila, L.; Airila, M.; Björkas, C.; Heinola, K.; Jarvinen, A.; Lahtinen, A.; Makkonen, T.; Nordlund, K.; Safi, E.; Pehkonen, S.-P.; Tala, T.; Varje, J.; Santala, M. I. K.; Moulton, D.; Lonnroth, J.; Lomanowski, B.; Kurki-Suonio, T.; Koskela, T.; King, R. F.; Karhunen, J.; Groth, M. (2019)
    Fusion performance in tokamaks hinges critically on the efficacy of the edge transport barrier (ETB) in suppressing energy losses. The new concept of 'fingerprints' is introduced to identify the instabilities that cause transport losses in the ETBs of many of today's experiments, from among widely posited candidates. Analysis of the gyrokinetic-Maxwell equations and gyrokinetic simulations of experiments reveals that each mode type produces characteristic ratios of transport in the various channels: density, heat, and impurities. This, together with experimental observations of transport in some channel or of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple H-mode cases with edge-localized modes that are examined, these fingerprints indicate that magnetohydrodynamic (MHD)-like modes are apparently not the dominant agent of energy transport; rather, this role is played by micro-tearing modes (MTMs) and electron temperature gradient (ETG) modes, and in addition, possibly by ion temperature gradient/ trapped electron modes (ITG/TEM) on JET (Joint European 'Torus). MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET, and ASDEX-U. Detailed simulations of two DIII-D ETBs also demonstrate and corroborate this.
  • Adamczyk, Bartosz; Heinonsalo, Jussi; Simon, Judy (2020)
    Abstract Organic matter decomposition plays a major role in the cycling of carbon (C) and nutrients in terrestrial ecosystems across the globe. Climate change accelerates the decomposition rate to potentially increase the release of greenhouse gases and further enhance global warming in the future. However, fractions of organic matter vary in turnover times and parts are stabilized in soils for longer time periods (C sequestration). Overall, a better understanding of the mechanisms underlying C sequestration is needed for the development of effective mitigation policies to reduce land-based production of greenhouse gases. Known mechanisms of C sequestration include the recalcitrance of C input, interactions with soil minerals, aggregate formation, as well as its regulation via abiotic factors. In this Minireview, we discuss the mechanisms behind C sequestration including the recently emerging significance of biochemical interactions between organic matter inputs that lead to C stabilization.
  • Harju, A. Vilhelmiina; Narhi, Ilkka; Mattsson, Marja; Kerminen, Kaisa; Kontro, Merja H. (2021)
    Views on the entry of organic pollutants into the organic matter (OM) decaying process are divergent, and in part poorly understood. To clarify these interactions, pesticide dissipation was monitored in organic and mineral soils not adapted to contaminants for 241 days; in groundwater sediment slurries adapted to pesticides for 399 days; and in their sterilized counterparts with and without peat (5%) or compost-peat-sand (CPS, 15%) mixture addition. The results showed that simazine, atrazine and terbuthylazine (not sediment slurries) were chemically dissipated in the organic soil, and peat or CPS-amended soils and sediment slurries, but not in the mineral soil or sediment slurries. Hexazinone was chemically dissipated best in the peat amended mineral soil and sediment slurries. In contrast, dichlobenil chemically dissipated in the mineral soil and sediment slurries. The dissipation product 2,6-dichlorobenzamide (BAM) concentrations were lowest in the mineral soil, while dissipation was generally poor regardless of plant-derived OM, only algal agar enhanced its chemical dissipation. Based on sterilized counterparts, only terbutryn appeared to be microbially degraded in the organic soil, i.e., chemical dissipation of pesticides would appear to be utmost important, and could be the first response in the natural cleansing capacity of the environment, during which microbial degradation evolves. Consistent with compound-specific dissipation in the mineral or organic environments, long-term concentrations of pentachloroaniline and hexachlorobenzene were lowest in the mineral-rich soils, while concentrations of dichlorodiphenyltrichloroethane (DTT) and metabolites were lowest in the organic soils of old market gardens. OM amendments changed pesticide dissipation in the mineral soil towards that observed in the organic soil; that is OM accelerated, slowed down or stopped dissipation.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Tuuva, T.; Talvitie, J. (2018)
    Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into l nu l nu, through either W or Z bosons, and b (b) over bar are presented. The analyses are based on a sample of proton-proton collisions at root s = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the standard model prediction. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.
  • Kirjoranta, Satu; Knaapila, Antti; Kilpelainen, Petri; Mikkonen, Kirsi S. (2020)
    Wood is an abundant and sustainable source of emerging food ingredients, namely hemicelluloses that fulfil a number of requirements for functional hydrocolloids. Hemicelluloses, especially spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), have potential to be used as stabilizers in various foods such as yogurts, beverages, dressings, and desserts. However, in addition to good technological functionality, safety, and low price, the applicability and market potential of new hydrocolloids is determined by their sensory properties. The present study reports, for the first time, the sensory profile of spruce GGM and birch GX in food. Sensory profiles from generic descriptive analysis of GGM- and GX-rich extracts, processed by spray drying or ethanol precipitation, were compared in three types of model food systems: water solutions, yogurt with solutions, and yogurt with emulsions stabilized by GGM or GX. Gum Arabic was included for comparison with a commercial ingredient known to have a mild flavor. The results showed that GGM and GX have a woody flavor, which can be reduced by ethanol precipitation and, in yogurt, masked by other food ingredients.
  • Kavaja, L.; Malmivaara, A.; Lähdeoja, T.; Remes, V.; Sund, R.; Paavola, M. (2018)
    Background and Aims: Shoulder capsular surgery is nowadays usually performed arthroscopically, and the proportion of arthroscopic method has rapidly increased during the last two decades. We assessed the incidence of shoulder capsular surgery procedures in Finland between 1999 and 2008. Material and Methods: We gathered the shoulder capsular surgery procedures for all kinds of shoulder instability in Finland between 1999 and 2008 from National Hospital Discharge Register and limited the patient material to include only certain diagnosis (International Classification of Diseases, 10th Edition) and Nordic Medico-Statistical Committee procedure code combinations. We analyzed the data in the whole country, between different age groups, and in university hospital districts. Results: The total incidence of shoulder capsular surgery procedures in Finland increased from 17 to 33 per 100,000 person-years. The incidence of arthroscopic procedures increased from 11 to 30 per 100,000 person-years and the proportion of arthroscopic procedures increased from 63% to 92% between years 1999 and 2007. The incidence of shoulder capsular surgery procedures increased on average around 90% in almost all age groups and particularly in the older age groups. We observed no significant geographical variation between university hospital districts. Conclusion: The incidence of shoulder capsular surgery procedures increased on average round 90% in almost all age groups. It seems to be difficult to support the rapidly increased rates of shoulder capsular surgery procedures or the arthroscopic method based on scientific evidence. While also older patients are treated with shoulder capsular surgery, well-defined indications for surgical intervention are needed so that the operations are conducted for the symptomatic patients benefitting most regardless of patients' age.
  • Kuopanportti, Pekko; Bandyopadhyay, Soumik; Roy, Arko; Angom, D. (2019)
    We study numerically the dynamical instabilities and splitting of singly and doubly quantized composite vortices in two-component Bose-Einstein condensates harmonically confined to quasi two dimensions. In this system, the vortices become pointlike composite defects that can be classified in terms of an integer pair (kappa(1), kappa(2)) of phase winding numbers. Our simulations based on zero-temperature mean-field theory reveal several vortex splitting behaviors that stem from the multicomponent nature of the system and do not have direct counterparts in single-component condensates. By calculating the Bogoliubov excitations of stationary axisymmetric composite vortices, we find nonreal excitation frequencies (i.e., dynamical instabilities) for the singly quantized (1, 1) and (1, -1) vortices and for all variants of doubly quantized vortices, which we define by the condition max(j=1,2) vertical bar kappa(j)vertical bar= 2. While the short-time predictions of the linear Bogoliubov analysis are confirmed by direct time integration of the Gross-Pitaevskii equations of motion, the time integration also reveals intricate long-time decay behavior not captured by the linearized dynamics. First, the (1, +/- 1) vortex is found to be unstable against splitting into a (1, 0) vortex and a (0, +/- 1) vortex. Second, the (2, 1) vortex exhibits a two-step decay process in which its initial splitting into a (2, 0) vortex and a (0, 1) vortex is followed by the off-axis splitting of the (2, 0) vortex into two (1, 0) vortices. Third, the (2, -2) vortex is observed to split into a (-1, 1) vortex, three (1, 0) vortices, and three (0, -1) vortices. Each of these splitting processes is the dominant decay mechanism of the respective stationary composite vortex for a wide range of intercomponent interaction strengths and relative populations of the two condensate components and should be amenable to experimental detection. Our results contribute to a better understanding of vortex physics, hydrodynamic instabilities, and two-dimensional quantum turbulence in multicomponent superfluids.
  • Heikkinen, Niko; Keskivali, Laura; Eskelinen, Patrik; Reinikainen, Matti; Putkonen, Matti (2021)
    Atomic layer deposition (ALD) was used to prepare a thin alumina layer on Fischer-Tropsch catalysts. Co-Pt-Si/gamma-Al2O3 catalyst was overcoated with 15-40 cycles of Al2O3 deposited from trimethylaluminum (TMA) and water vapor, followed by thermal annealing. The resulting tailored Fischer-Tropsch catalyst with 35 cycle ALD overcoating had increased activity compared to unmodified catalyst. The increase in activity was achieved without significant loss of selectivity towards heavier hydrocarbons. Altered catalyst properties were assumed to result from cobalt particle stabilization by ALD alumina overcoating and nanoscale porosity of the overcoating. In addition to optimal thickness of the overcoat, thermal annealing was an essential part of preparing ALD overcoated catalyst.