Browsing by Subject "STABILIZATION"

Sort by: Order: Results:

Now showing items 1-20 of 27
  • Valoppi, Fabio; Lahtinen, Maarit; Bhattarai, Mamata; Kirjoranta, Satu; Juntti, Venla; Peltonen, Leena; Kilpeläinen, Petri O.; Mikkonen, Kirsi S. (2019)
    With the emerging bio-based technologies, the fractionation of complex biomass is essential to obtain value-added functional molecules for material, chemical, and energy production. The refining process of biomasses often requires the use of solvents and hazardous chemicals, whose removal after fractionation decreases the eco-compatibility of the process and increases the cost and time of the refinement. Softwood extracts obtained through the environmentally friendly pressurized hot water extraction are heterogeneous mixtures rich in hemicelluloses and lignin. Here we developed a simple, fast, organic solvent-free, and sustainable method to fractionate softwood extracts using centrifugal forces. The characteristics of each obtained fraction in terms of composition, macromolecular properties (particle size, molar mass, charge), interfacial activity, and stabilization capacity were highly dependent on the centrifugal force and time applied. The hemicellulose and lignin contents in the fractions were balanced by centrifugal forces to obtain functional emulsifiers that efficiently stabilized the oil/water interface. Through fractionation of softwood extracts, we also found that both the hemicelluloses and lignin particles are involved in emulsion interface formation and stabilization. Centrifugation is a scalable concept that can be feasibly and easily introduced into the biorefinery system and used to optimize the composition of biomass fractions for targeted purposes.
  • Augustyn, Bozena; Stepien, Piotr; Poojari, Chetan; Mobarak, Edouard; Polit, Agnieszka; Wisniewska-Becker, Anna; Rog, Tomasz (2019)
    Nanodiscs are suitable tools for studies of membrane proteins (MPs) due to their ability to mimic native biological membranes, and several MP structures are solved in nanodiscs. Among the various cell membrane components, cholesterol (CHL) is known to regulate protein function and its concentration can reach up to 50 mol %. However, studies comprising cholesterol are challenging due to its hydrophobic nature, hence, nanodiscs with only a low cholesterol concentration have been studied. To overcome the problem, cholesterol analogs with high solubility in polar solutions are often used, and one of them is cholesteryl hemisuccinate (CHS). Nevertheless, in molecular dynamics (MD) simulation, this is not an obstacle. In this study, we performed MD simulations of nanodiscs containing neutral phosphatidylcholine (POPC) lipids, negatively charged phosphatidylglycerol (POPG) lipids, CHL, or negatively charged cholesterol analog, CHS. Our simulations show that CHS increases the order of lipids in nanodiscs; the effect is, however, weaker than CHL and even smaller in nanodiscs. Furthermore, CHS gathered around scaffold proteins while cholesterol was uniformly distributed in the nanodiscs. Thus, nanodiscs with CHS are heterogeneous and not equivalent to nanodiscs with CHL. Finally, we also observed the increased concentration of POPG near the scaffold proteins, driven by electrostatic interactions. The MD results are experimentally validated using electron paramagnetic resonance spectroscopy. These results show that nanodiscs are, in fact, complex structures not easily comparable with planar lipid bilayers.
  • Ferreira Lemos, Monica; Engeström, Yrjö (2018)
    The purpose of this paper is to analyze how a new concept of educational management was produced in a formative intervention project for manager educators in the city of São Paulo, Brazil. Drawing on Vygotsky and Leontiev, we asked: What is the nature of the interplay between participants’ personal senses and the societal meaning of educational management in the process of collective concept formation? The collective concept formation discourse was analyzed in three steps: initial explication of a raw object, clashes in further elaboration of the raw object, and stabilization of the new concept. The raw object reproduced a taken-for-granted meaning of educational management as promoting conditions for teaching and learning. The clashes occurred mainly between the notion of management for teaching and learning and the notion of management for teaching and learning for community transformation. The stabilization was achieved by a vote and defined the purpose of educational management seemingly as it was already formulated in the raw object. However, this stabilization was temporary and involved attempts to transcend the opposition between the two alternative definitions. Thus, the actual meaning and concept of educational management remained open to further steps. In this paper, we report on how manager educators engage in a collective effort to conceptualize educational management. Our article proposes and tests a new theoretical framework for studying changes in educational management as processes of collective concept formation.
  • Bhattarai, Mamata; Sulaeva, Irina; Pitkänen, Leena; Kontro, Inkeri; Tenkanen, Maija; Potthast, Antje; Mikkonen, Kirsi S. (2020)
    Development of a sustainable bioeconomy requires valorization of renewable resources, such as wood hemicelluloses. The intra- and inter-molecular associations of hemicelluloses within themselves or with other wood components can result in complex macromolecular features. These features exhibit functionality as hydrocolloids, however macromolecular characterization of these heterogeneous materials are challenging using conventional techniques such as size-exclusion chromatography. We studied galactoglucomannans (GGM) -rich softwood extracts at two grades of purity—as crude extract and after ethanol-precipitation. Asymmetrical flow field-flow fractionation (AF4) was optimized and utilized to fractionate size classes in GGM extracts, and subsequent characterization was performed with light scattering and microscopy techniques. Both GGM extracts contained polysaccharides of around 10,000 g/mol molar mass, and colloidal assemblies and/or particles in sub-micron size range. The optimized AF4 method facilitates the characterization of complex biomass-derived carbohydrates without pre-fractionation, and provides valuable understanding of their unique macromolecular features for their future application in food, pharmaceuticals, and cosmetics.
  • Hyytiäinen, Heli K.; Mölsä, Sari H.; Junnila, Jouni J. T.; Laitinen-Vapaavuori, Outi M.; Hielm-Björkman, Anna K. (2018)
    This study aimed at developing a quantitative testing battery for dogs' stifle functionality, as, unlike in human medicine, currently none is available in the veterinary field. Forty-three dogs with surgically treated unilateral cranial cruciate ligament rupture and 21 dogs with no known musculoskeletal problems were included. Eight previously studied tests: compensation in sitting and lying positions, symmetry of thrust in hindlimbs when rising from lying and sitting, static weight bearing, stifle flexion and extension and muscle mass symmetry, were summed into the Finnish Canine Stifle Index (FCSI). Sensitivities and specificities of the dichotomised FCSI score were calculated against orthopaedic examination, radiological and force platform analysis and a conclusive assessment (combination of previous). One-way analysis of variance (ANOVA)was used to evaluate FCSI score differences between the groups. Cronbach's alpha for internal consistency was calculated. The range of the index score was 0-263, with a proposed cut-off value of 60 between 'adequate' and 'compromised' functional performance. In comparison to the conclusive assessment, the sensitivity and specificity of the FCSI were 90 per cent and 90.5 per cent, respectively. Cronbach's alpha for internal reliability of the FCSI score was 0.727. An estimate of the surgically treated and control dogs' FCSI scores were 105 (95 per cent CI 93 to 116) and 20 (95 per cent CI 4 to 37), respectively. The difference between the groups was significant (P
  • Sheehy, Jatta; Nuutinen, Visa; Six, Johan; Palojarvi, Ansa; Knuutila, Ossi; Kaseva, Janne; Regina, Kristiina (2019)
    By processing large quantities of crop residues, earthworms enhance the mineralization of organic matter but have also been shown to stabilize soil organic carbon (SOC) into soil fractions like microaggregates (53-250 mu m) within macroaggregates (> 250 mu m) especially in no-till soils. Our objective was to find direct evidence on the impact of an anecic, soil surface-feeding earthworm, Lumbricus terrestris L., on the redistribution of SOC and soil nitrogen (N) into macroaggregate-occluded soil fractions of boreal soils. We sampled soil (0-5 cm depth) from the middens of L. terrestris (mounds of collected residue and surface casts at the openings of its permanent burrows) and the adjacent non-midden (bulk) soil at three no-till sites in southern Finland: two clayey sites (sites 1-2) and one coarse textured site (site 3). Compared to bulk soil, the soil in L. terrestris middens featured general increase in aggregate size and content of SOC and N within the large macroaggregates (> 2000 mu m) at the clayey sites. The microaggregates within the large macroaggregates had accumulated more SOC and N in the midden soil especially at site 1 where 99% of the difference in total SOC between midden and bulk soil was associated with this type of SOC stabilization. At site 2, the increase in SOC found in the large macroaggregates was counteracted by a decrease in SOC in microaggregates within the small macroaggregates (250-2000 mu m). No differences in SOC stored in soil fractions were found between midden and non-midden soil at the coarse soil site 3 with higher top soil decomposition rate compared to sites 1 and 2. Across the study sites, the total amount of SOC was 6% higher in midden soil compared to the bulk soil. These results suggest L. terrestris mediates the storage of SOC and N into better protected soil fractions in clay soils under boreal conditions.
  • Heikkinen, Niko; Keskiväli, Laura; Palo, Jasmiina; Reinikainen, Matti; Putkonen, Matti (2022)
    Atomic layer deposition (ALD) and molecular layer deposition (MLD) methods were used to prepare overcoatings on a cobalt-based Fischer-Tropsch catalyst. A Co-Pt-Si/gamma-Al2O3 catalyst (21.4 wt % Co, 0.2 wt % Pt, and 1.6 wt % Si) prepared by incipient wetness impregnation was ALD overcoated with 30-40 cycles of trimethylaluminum (TMA) and water, followed by temperature treatment (420 degrees C) in an inert nitrogen atmosphere. MLD-overcoated samples with corresponding film thicknesses were prepared by using TMA and ethylene glycol, followed by temperature treatment (400 degrees C) in an oxidative synthetic air atmosphere. The ALD catalyst (40 deposition cycles) had a positive activity effect upon moderate water addition (P-H2O/P-H2 = 0.42), and compared with a non-overcoated catalyst, it showed resistance to irreversible deactivation after co-fed water conditions. In addition, MLD overcoatings had a positive effect on the catalyst activity upon moderate water addition. However, compared with a non-overcoated catalyst, only the 10-cycle MLD-overcoated catalyst retained increased activity throughout high added water conditions (P-H2O/P-H2 = 0.71). All catalyst variations exhibited irreversible deactivation under high added water conditions.
  • Morais de Carvalho, Danila; Lahtinen, Maarit; Lawoko, Martin; Mikkonen, Kirsi S. (2020)
    Lignin-carbohydrate complexes (LCCs) are hybrid structures containing covalently linked moieties of lignin and carbohydrates. The structure and behavior of LCCs affect both industrial processes and practical applications of lignocellulosic biomass. However, the identification of phenylglycoside, benzylether, and gamma (gamma)-ester LCC bonds in lignocellulosic biomass is limited due to their relatively low abundance compared to plain carbohydrate and lignin structures. Herein, we enriched the LCC bonds in softwood galactoglucomannan (GGM)-rich extract fractionated by (1) a solvent (ethanol), (2) enzymes, and (3) physical techniques. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy analysis was used to identify the LCC bonds. Phenylglycoside and benzylether bonds were concentrated in the ethanol-soluble GGM fractions. A benzylether bond was concentrated into GGM fractions containing larger molecules (>500 Da) through physical techniques. The gamma-ester bond was identified in all studied GGM fractions, which is explained by its stability and possible presence in residual xylan. In summary, we demonstrated the potential of the suggested techniques to enrich LCC bonds in softwood extract and improve LCC identification. Such techniques may also enable further studies on the structure and functionality of LCC bonds and open new prospects in the engineering of biomolecules.
  • Bhattarai, Mamata; Pitkänen, Leena M.; Kitunen, Veikko; Korpinen, Risto; Ilvesniemi, Hannu; Kilpeläinen, Petri O.; Lehtonen, Mari I.; Mikkonen, Kirsi S. (2019)
    For a sustainable food chain, the demand for plant-based, functional, and cost-effective food hydrocolloids is on a high-rise. Hemicelluloses from the renewable lignocellulosic biomass are available in abundance from side-streams of the forestry industry to fulfill this demand. Their effective valorization requires a safe, economic extraction method that can be up-scaled to an industrial scale and, simultaneously, understanding of their functionality to develop applications. In this study, an aqueous-based extraction method, pressurized hot water extraction (PHWE) of spruce saw meal was used to obtain galactoglucomannans (GGM), "spruce gum". Ethanol precipitation was performed to remove non-polysaccharide extractives such as free phenolic compounds, and the emulsion component ratio-dependent interfacial saturation capacity of the remaining purified fraction was studied to understand its functionality. GGM resulted in good to excellent emulsification and stabilization of oil-in-water emulsions and exhibited adsorption at the oil droplet interface, which depended on the amount of oil and droplet size of emulsions. The adsorbed GGM content was determined by gas chromatography after acid methanolysis, and their macromolecular characteristics were studied by size-exclusion chromatography. At GGM to oil ratios 2, 1, and 0.4, stable emulsions with predicted several months of shelf life at room temperature were achieved. The results indicated mechanisms affecting the physical stabilization and breakdown of emulsions containing spruce gum, a novel sustainable hydrocolloid. (C) 2018 Elsevier Ltd. All rights reserved.
  • Mikkila, Joona; Trogen, Mikaela; Koivu, Klaus A. Y.; Kontro, Jussi; Kuuskeri, Jaana; Maltari, Riku; Dekere, Zane; Kemell, Marianna; Makela, Miia R.; Nousiainen, Paula A.; Hummel, Michael; Sipila, Jussi; Hilden, Kristiina (2020)
    The kraft lignin's low molecular weight and too high hydroxyl content hinder its application in bio-based carbon fibers. In this study, we were able to polymerize kraft lignin and reduce the amount of hydroxyl groups by incubating it with the white-rot fungus Obba rivulosa. Enzymatic radical oxidation reactions were hypothesized to induce condensation of lignin, which increased the amount of aromatic rings connected by carbon-carbon bonds. This modification is assumed to be beneficial when aiming for graphite materials such as carbon fibers. Furthermore, the ratio of remaining aliphatic hydroxyls to phenolic hydroxyls was increased, making the structure more favorable for carbon fiber production. When the modified lignin was mixed together with cellulose, the mixture could be spun into intact precursor fibers by using dry-jet wet spinning. The modified lignin leaked less to the spin bath compared with the unmodified lignin starting material, making the recycling of spin-bath solvents easier. The stronger incorporation of modified lignin in the precursor fibers was confirmed by composition analysis, thermogravimetry, and mechanical testing. This work shows how white-rot fungal treatment can be used to modify the structure of lignin to be more favorable for the production of bio-based fiber materials.
  • DIII-D Team; JET Contributors; Kotschenreuther, M.; Ahlgren, T.; Aho-Mantila, L.; Airila, M.; Björkas, C.; Heinola, K.; Jarvinen, A.; Lahtinen, A.; Makkonen, T.; Nordlund, K.; Safi, E.; Pehkonen, S.-P.; Tala, T.; Varje, J.; Santala, M. I. K.; Moulton, D.; Lonnroth, J.; Lomanowski, B.; Kurki-Suonio, T.; Koskela, T.; King, R. F.; Karhunen, J.; Groth, M. (2019)
    Fusion performance in tokamaks hinges critically on the efficacy of the edge transport barrier (ETB) in suppressing energy losses. The new concept of 'fingerprints' is introduced to identify the instabilities that cause transport losses in the ETBs of many of today's experiments, from among widely posited candidates. Analysis of the gyrokinetic-Maxwell equations and gyrokinetic simulations of experiments reveals that each mode type produces characteristic ratios of transport in the various channels: density, heat, and impurities. This, together with experimental observations of transport in some channel or of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple H-mode cases with edge-localized modes that are examined, these fingerprints indicate that magnetohydrodynamic (MHD)-like modes are apparently not the dominant agent of energy transport; rather, this role is played by micro-tearing modes (MTMs) and electron temperature gradient (ETG) modes, and in addition, possibly by ion temperature gradient/ trapped electron modes (ITG/TEM) on JET (Joint European 'Torus). MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET, and ASDEX-U. Detailed simulations of two DIII-D ETBs also demonstrate and corroborate this.
  • Li, Wei; Chen, Jian; Zhao, Shujie; Huang, Tianhe; Ying, Huiyan; Trujillo, Claudia; Molinaro, Giuseppina; Zhou, Zheng; Jiang, Tao; Liu, Wei; Li, Linwei; Bai, Yuancheng; Quan, Peng; Ding, Yaping; Hirvonen, Jouni; Yin, Guoyong; Santos, Helder A.; Fan, Jin; Liu, Dongfei (2022)
    High drug loading improves therapeutic efficacy and reduces side effects in drug delivery. Here, the authors use controlled diffusion of solvents to precipitate drug nanoparticles in polymer particles while the polymer is solidifying and demonstrate the particles for drug delivery in a spinal cord injury model. Drug delivery systems with high content of drug can minimize excipients administration, reduce side effects, improve therapeutic efficacy and/or promote patient compliance. However, engineering such systems is extremely challenging, as their loading capacity is inherently limited by the compatibility between drug molecules and carrier materials. To mitigate the drug-carrier compatibility limitation towards therapeutics encapsulation, we developed a sequential solidification strategy. In this strategy, the precisely controlled diffusion of solvents from droplets ensures the fast in-droplet precipitation of drug molecules prior to the solidification of polymer materials. After polymer solidification, a mass of drug nanoparticles is embedded in the polymer matrix, forming a nano-in-micro structured microsphere. All the obtained microspheres exhibit long-term storage stability, controlled release of drug molecules, and most importantly, high mass fraction of therapeutics (21.8-63.1 wt%). Benefiting from their high drug loading degree, the nano-in-micro structured acetalated dextran microspheres deliver a high dose of methylprednisolone (400 mu g) within the limited administration volume (10 mu L) by one single intrathecal injection. The amount of acetalated dextran used was 1/433 of that of low drug-loaded microspheres. Moreover, the controlled release of methylprednisolone from high drug-loaded microspheres contributes to improved therapeutic efficacy and reduced side effects than low drug-loaded microspheres and free drug in spinal cord injury therapy.
  • Adamczyk, Bartosz; Heinonsalo, Jussi; Simon, Judy (2020)
    Abstract Organic matter decomposition plays a major role in the cycling of carbon (C) and nutrients in terrestrial ecosystems across the globe. Climate change accelerates the decomposition rate to potentially increase the release of greenhouse gases and further enhance global warming in the future. However, fractions of organic matter vary in turnover times and parts are stabilized in soils for longer time periods (C sequestration). Overall, a better understanding of the mechanisms underlying C sequestration is needed for the development of effective mitigation policies to reduce land-based production of greenhouse gases. Known mechanisms of C sequestration include the recalcitrance of C input, interactions with soil minerals, aggregate formation, as well as its regulation via abiotic factors. In this Minireview, we discuss the mechanisms behind C sequestration including the recently emerging significance of biochemical interactions between organic matter inputs that lead to C stabilization.
  • Huang, Weilin; van Bodegom, Peter M.; Declerck, Stephane; Heinonsalo, Jussi; Cosme, Marco; Viskari, Toni; Liski, Jari; Soudzilovskaia, Nadejda A. (2022)
    Chemical profiles of arbuscular (AM) and ectomycorrhizal (EM) fungi reveal that differences in decomposability-relevant chemistry are larger between AM and EM fungi than across plant functional groups. The chemical quality of soil carbon (C) inputs is a major factor controlling litter decomposition and soil C dynamics. Mycorrhizal fungi constitute one of the dominant pools of soil microbial C, while their litter quality (chemical proxies of litter decomposability) is understood poorly, leading to major uncertainties in estimating soil C dynamics. We examined litter decomposability of arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal species using samples obtained from in vitro cultivation. We showed that the chemical composition of AM and EM fungal mycelium differs significantly: EM fungi have higher concentrations of labile (water-soluble, ethanol-soluble) and recalcitrant (non-extractable) chemical components, while AM fungi have higher concentrations of acid-hydrolysable components. Our results imply that differences in decomposability traits among mycorrhizal fungal guilds represent a critically important driver of the soil C cycle, which could be as vital as is recognized for differences among aboveground plant litter.
  • Harju, A. Vilhelmiina; Narhi, Ilkka; Mattsson, Marja; Kerminen, Kaisa; Kontro, Merja H. (2021)
    Views on the entry of organic pollutants into the organic matter (OM) decaying process are divergent, and in part poorly understood. To clarify these interactions, pesticide dissipation was monitored in organic and mineral soils not adapted to contaminants for 241 days; in groundwater sediment slurries adapted to pesticides for 399 days; and in their sterilized counterparts with and without peat (5%) or compost-peat-sand (CPS, 15%) mixture addition. The results showed that simazine, atrazine and terbuthylazine (not sediment slurries) were chemically dissipated in the organic soil, and peat or CPS-amended soils and sediment slurries, but not in the mineral soil or sediment slurries. Hexazinone was chemically dissipated best in the peat amended mineral soil and sediment slurries. In contrast, dichlobenil chemically dissipated in the mineral soil and sediment slurries. The dissipation product 2,6-dichlorobenzamide (BAM) concentrations were lowest in the mineral soil, while dissipation was generally poor regardless of plant-derived OM, only algal agar enhanced its chemical dissipation. Based on sterilized counterparts, only terbutryn appeared to be microbially degraded in the organic soil, i.e., chemical dissipation of pesticides would appear to be utmost important, and could be the first response in the natural cleansing capacity of the environment, during which microbial degradation evolves. Consistent with compound-specific dissipation in the mineral or organic environments, long-term concentrations of pentachloroaniline and hexachlorobenzene were lowest in the mineral-rich soils, while concentrations of dichlorodiphenyltrichloroethane (DTT) and metabolites were lowest in the organic soils of old market gardens. OM amendments changed pesticide dissipation in the mineral soil towards that observed in the organic soil; that is OM accelerated, slowed down or stopped dissipation.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search is presented for massive narrow resonances decaying either into two Higgs bosons, or into a Higgs boson and a W or Z boson. The decay channels considered are HHbb+- and VHqq-, where H denotes the Higgs boson, and V denotes the W or Z boson. This analysis is based on a data sample of proton-proton collisions collected at a center-of-mass energy of 13 TeV by the CMS Collaboration, corresponding to an integrated luminosity of 35.9 fb(-1). For the TeV-scale mass resonances considered, substructure techniques provide ways to differentiate among the hadronization products from vector boson decays to quarks, Higgs boson decays to bottom quarks, and quark- or gluon-induced jets. Reconstruction techniques are used that have been specifically optimized to select events in which the tau lepton pair is highly boosted. The observed data are consistent with standard model expectations and upper limits are set at 95% confidence level on the product of cross section and branching fraction for resonance masses between 0.9 and 4.0 TeV. Exclusion limits are set in the context of bulk radion and graviton models:spin-0 radion resonances are excluded below a mass of 2.7 TeV at 95% confidence level. In the spin-1 heavy vector triplet framework, mass-degenerate W and Z resonances with dominant couplings to the standard model gauge bosons are excluded below a mass of 2.8 TeV at 95% confidence level. These are the first limits for massive resonances at the TeV scale with these decay channels at 13 TeV.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search is presented for pair production of the standard model Higgs boson using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb(-1). The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where one pair is highly Lorentz-boosted and is reconstructed as a single large-area jet, and the other pair is resolved and is reconstructed using two b-tagged jets. The results are obtained by combining this analysis with another from CMS looking for events with two large jets. Limits are set on the product of the cross sections and branching fractions for narrow bulk gravitons and radions in warped extradimensional models having a mass in the range 750-3000 GeV. The resulting observed and expected upper limits on the non-resonant Higgs boson pair production cross section correspond to 179 and 114 times the standard model value, respectively, at 95% confidence level. The existence of anomalous Higgs boson couplings is also investigated and limits are set on the non-resonant Higgs boson pair production cross sections for representative coupling values.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Tuuva, T.; Talvitie, J. (2018)
    Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into l nu l nu, through either W or Z bosons, and b (b) over bar are presented. The analyses are based on a sample of proton-proton collisions at root s = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the standard model prediction. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.
  • Kirjoranta, Satu; Knaapila, Antti; Kilpelainen, Petri; Mikkonen, Kirsi S. (2020)
    Wood is an abundant and sustainable source of emerging food ingredients, namely hemicelluloses that fulfil a number of requirements for functional hydrocolloids. Hemicelluloses, especially spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), have potential to be used as stabilizers in various foods such as yogurts, beverages, dressings, and desserts. However, in addition to good technological functionality, safety, and low price, the applicability and market potential of new hydrocolloids is determined by their sensory properties. The present study reports, for the first time, the sensory profile of spruce GGM and birch GX in food. Sensory profiles from generic descriptive analysis of GGM- and GX-rich extracts, processed by spray drying or ethanol precipitation, were compared in three types of model food systems: water solutions, yogurt with solutions, and yogurt with emulsions stabilized by GGM or GX. Gum Arabic was included for comparison with a commercial ingredient known to have a mild flavor. The results showed that GGM and GX have a woody flavor, which can be reduced by ethanol precipitation and, in yogurt, masked by other food ingredients.
  • Kavaja, L.; Malmivaara, A.; Lähdeoja, T.; Remes, V.; Sund, R.; Paavola, M. (2018)
    Background and Aims: Shoulder capsular surgery is nowadays usually performed arthroscopically, and the proportion of arthroscopic method has rapidly increased during the last two decades. We assessed the incidence of shoulder capsular surgery procedures in Finland between 1999 and 2008. Material and Methods: We gathered the shoulder capsular surgery procedures for all kinds of shoulder instability in Finland between 1999 and 2008 from National Hospital Discharge Register and limited the patient material to include only certain diagnosis (International Classification of Diseases, 10th Edition) and Nordic Medico-Statistical Committee procedure code combinations. We analyzed the data in the whole country, between different age groups, and in university hospital districts. Results: The total incidence of shoulder capsular surgery procedures in Finland increased from 17 to 33 per 100,000 person-years. The incidence of arthroscopic procedures increased from 11 to 30 per 100,000 person-years and the proportion of arthroscopic procedures increased from 63% to 92% between years 1999 and 2007. The incidence of shoulder capsular surgery procedures increased on average around 90% in almost all age groups and particularly in the older age groups. We observed no significant geographical variation between university hospital districts. Conclusion: The incidence of shoulder capsular surgery procedures increased on average round 90% in almost all age groups. It seems to be difficult to support the rapidly increased rates of shoulder capsular surgery procedures or the arthroscopic method based on scientific evidence. While also older patients are treated with shoulder capsular surgery, well-defined indications for surgical intervention are needed so that the operations are conducted for the symptomatic patients benefitting most regardless of patients' age.