Browsing by Subject "STAR-FORMATION RATES"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Jaffe, Yara L.; Verheijen, Marc A. W.; Haines, Chris P.; Yoon, Hyein; Cybulski, Ryan; Montero-Castano, Maria; Smith, Rory; Chung, Aeree; Deshev, Boris Z.; Fernandez, Ximena; van Gorkom, Jacqueline; Poggianti, Bianca M.; Yun, Min S.; Finoguenov, Alexis; Smith, Graham P.; Okabe, Nobuhiro (2016)
    In a hierarchical Universe clusters grow via the accretion of galaxies from the field, groups and even other clusters. As this happens, galaxies can lose and/or consume their gas reservoirs via different mechanisms, eventually quenching their star formation. We explore the diverse environmental histories of galaxies through a multiwavelength study of the combined effect of ram-pressure stripping and group 'processing' in Abell 963, a massive growing cluster at z = 0.2 from the Blind Ultra Deep HI Environmental Survey (BUDHIES). We incorporate hundreds of new optical redshifts (giving a total of 566 cluster members), as well as Subaru and XMM-Newton data from LoCuSS, to identify substructures and evaluate galaxy morphology, star formation activity, and HI content (via HI deficiencies and stacking) out to 3 x R-200. We find that Abell 963 is being fed by at least seven groups, that contribute to the large number of passive galaxies outside the cluster core. More massive groups have a higher fraction of passive and HI-poor galaxies, while low-mass groups host younger (often interacting) galaxies. For cluster galaxies not associated with groups we corroborate our previous finding that HI gas (if any) is significantly stripped via ram-pressure during their first passage through the intracluster medium, and find mild evidence for a starburst associated with this event. In addition, we find an overabundance of morphologically peculiar and/or star-forming galaxies near the cluster core. We speculate that these arise from the effect of groups passing through the cluster (post-processing). Our study highlights the importance of environmental quenching and the complexity added by evolving environments.
  • Gozaliasl, Ghassem; Finoguenov, Alexis; Tanaka, Masayuki; Dolag, Klaus; Montanari, Francesco; Kirkpatrick, Charles C.; Vardoulaki, Eleni; Khosroshahi, Habib G.; Salvato, Mara; Laigle, Clotilde; McCracken, Henry J.; Ilbert, Olivier; Cappelluti, Nico; Daddi, Emanuele; Hasinger, Guenther; Capak, Peter; Scoville, Nick Z.; Toft, Sune; Civano, Francesca; Griffiths, Richard E.; Balogh, Michael; Li, Yanxia; Ahoranta, Jussi; Mei, Simona; Iovino, Angela; Henriques, Bruno M. B.; Erfanianfar, Ghazaleh (2019)
    We present the results of a search for galaxy clusters and groups in the ∼2 deg2 of the COSMOS field using all available X-ray observations from the XMM-Newton and Chandra observatories.We reach an X-ray flux limit of 3 × 10−16 erg cm−2 s−1 in the 0.5-2 keV range, and identify 247 X-ray groups with M200c = 8 × 1012-3 × 1014M at a redshift range of 0.08 ≤ z < 1.53, using the multiband photometric redshift and the master spectroscopic redshift catalogues of the COSMOS. The X-ray centres of groups are determined using high-resolution Chandra imaging. We investigate the relations between the offset of the brightest group galaxies (BGGs) from halo X-ray centre and group properties and compare with predictions from semi-analytic models and hydrodynamical simulations. We find that BGG offset decreases with both increasing halo mass and decreasing redshift with no strong dependence on the X-ray flux and SNR. We show that the BGG offset decreases as a function of increasing magnitude gap with no considerable redshift-dependent trend. The stellar mass of BGGs in observations extends over a wider dynamic range compared to model predictions. At z < 0.5, the central dominant BGGs become more massive than those with large offsets by up to 0.3 dex, in agreement with model prediction. The observed and predicted log-normal scatter in the stellar mass of both low- and large-offset BGGs at fixed halo mass is ∼0.3 dex.
  • Balogh, Michael L.; Mcgee, Sean L.; Mok, Angus; Muzzin, Adam; van der Burg, Remco F. J.; Bower, Richard G.; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S.; Noble, Allison; Parker, Laura C.; Tanaka, Masayuki; Wilman, David J.; Webb, Tracy; Wilson, Gillian; Yee, Howard K. C. (2016)
    We present an analysis of galaxies in groups and clusters at 0.8 <z <1.2, from the GCLASS and GEEC2 spectroscopic surveys. We compute a 'conversion fraction' f(convert) that represents the fraction of galaxies that were prematurely quenched by their environment. For massive galaxies, M-star > 10(10.3) M-circle dot, we find f(convert) similar to 0.4 in the groups and similar to 0.6 in the clusters, similar to comparable measurements at z = 0. This means the time between first accretion into a more massive halo and final star formation quenching is t(p) similar to 2 Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay time-scale may depend on stellarmass, with t(p) approaching t(Hubble) for M-star similar to 10(9.5) M-circle dot. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to 'overconsumption', the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at z = 1.
  • Galametz, Audrey; Pentericci, Laura; Castellano, Marco; Mendel, Trevor; Hartley, Will G.; Fossati, Matteo; Finoguenov, Alexis; Almaini, Omar; Beifiori, Alessandra; Fontana, Adriano; Grazian, Andrea; Scodeggio, Marco; Kocevski, Dale D. (2018)
    We present a large-scale galaxy structure C1 J021734-0513 at z similar to 0.65 discovered in the UKIDSS UDS field, made of similar to 20 galaxy groups and clusters, spreading over 10 Mpc. We report on a VLT/VIMOS spectroscopic follow-up program that, combined with past spectroscopy, allowed us to confirm four galaxy clusters (M-200 similar to 10(14) M-circle dot) and a dozen associated groups and star-forming galaxy overdensities. Two additional filamentary structures at z similar to 0.62 and 0.69 and foreground and background clusters at 0.6 <z <0.7 were also confirmed along the line of sight. The structure subcomponents are at different formation stages. The clusters have a core dominated by passive galaxies and an established red sequence. The remaining structures are a mix of star-forming galaxy overdensities and forming groups. The presence of quiescent galaxies in the core of the latter shows that 'pre-processing' has already happened before the groups fall into their more massive neighbours. Our spectroscopy allows us to derive spectral index measurements e.g. emission/absorption line equivalent widths, strength of the 4000 angstrom break, valuable to investigate the star formation history of structure members. Based on these line measurements, we select a population of 'post-starburst' galaxies. These galaxies are preferentially found within the virial radius of clusters, supporting a scenario in which their recent quenching could be prompted by gas stripping by the dense intracluster medium. We derive stellar age estimates using Markov Chain Monte Carlo-based spectral fitting for quiescent galaxies and find a correlation between ages and colours/stellar masses which favours a top-down formation scenario of the red sequence. A catalogue of similar to 650 redshifts in UDS is released alongside the paper (via MNRAS online data).
  • Ade, P. A. R.; Juvela, M.; Keihänen, E.; Kurki-Suonio, H.; Lähteenmäki, A.; Suur-Uski, A. -S.; Valiviita, J.; Planck Collaboration (2015)
    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (greater than or similar to 0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 mu m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 mu m emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 +/- 1.0) K with a spectral index of 1.62 +/- 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60 GHz, which corresponds to a star formation rate of around 0.12 M-circle dot yr(-1). We find a 2.3 sigma detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 +/- 0.3 Jy, which is in line with expectations from our Galaxy.
  • Erfanianfar, G.; Finoguenov, A.; Furnell, K.; Popesso, P.; Biviano, A.; Wuyts, S.; Collins, C. A.; Mirkazemi, M.; Comparat, J.; Khosroshahi, H.; Nandra, K.; Capasso, R.; Rykoff, E.; Wilman, D.; Merloni, A.; Clerc, N.; Salvato, M.; Chitham, J. I.; Kelvin, L. S.; Gozaliasl, G.; Weijmans, A.; Brownstein, J.; Egami, E.; Pereira, M. J.; Schneider, D. P.; Kirkpatrick, C.; Damsted, S.; Kukkola, A. (2019)
    We present the brightest cluster galaxies (BCGs) catalog for SPectroscoic IDentification of eROSITA Sources (SPIDERS) DR14 cluster program value-added catalog. We list the 416 BCGs identified as part of this process, along with their stellar mass, star formation rates (SFRs), and morphological properties. We identified the BCGs based on the available spectroscopic data from SPIDERS and photometric data from SDSS. We computed stellar masses and SFRs of the BCGs on the basis of SDSS, WISE, and GALEX photometry using spectral energy distribution fitting. Morphological properties for all BCGs were derived by Sersic profile fitting using the software package SIGMA in different optical bands (g,r,i). We combined this catalog with the BCGs of galaxy groups and clusters extracted from the deeper AEGIS, CDFS, COSMOS, XMM-CFHTLS, and XMM-XXL surveys to study the stellar mass-halo mass relation using the largest sample of X-ray groups and clusters known to date. This result suggests that the mass growth of the central galaxy is controlled by the hierarchical mass growth of the host halo. We find a strong correlation between the stellar mass of BCGs and the mass of their host halos. This relation shows no evolution since z similar to 0.65. We measure a mean scatter of 0.21 and 0.25 for the stellar mass of BCGs in a given halo mass at low (0.1 <z <0.3) and high (0.3 <z <0.65) redshifts, respectively. We further demonstrate that the BCG mass is covariant with the richness of the host halos in the very X-ray luminous systems. We also find evidence that part of the scatter between X-ray luminosity and richness can be reduced by considering stellar mass as an additional variable.
  • Balogh, Michael L.; van der Burg, Remco F. J.; Muzzin, Adam; Rudnick, Gregory; Wilson, Gillian; Webb, Kristi; Biviano, Andrea; Boak, Kevin; Cerulo, Pierluigi; Chan, Jeffrey; Cooper, M. C.; Gilbank, David G.; Gwyn, Stephen; Lidman, Chris; Matharu, Jasleen; McGee, Sean L.; Old, Lyndsay; Pintos-Castro, Irene; Reeves, Andrew M. M.; Shipley, Heath; Vulcani, Benedetta; Yee, Howard K. C.; Alonso, M. Victoria; Bellhouse, Callum; Cooke, Kevin C.; Davidson, Anna; De Lucia, Gabriella; Demarco, Ricardo; Drakos, Nicole; Fillingham, Sean P.; Finoguenov, Alexis; Ben Forrest,; Golledge, Caelan; Jablonka, Pascale; Garcia, Diego Lambas; McNab, Karen; Muriel, Hernan; Nantais, Julie B.; Noble, Allison; Parker, Laura C.; Petter, Grayson; Poggianti, Bianca M.; Townsend, Melinda; Valotto, Carlos; Webb, Tracy; Zaritsky, Dennis (2021)
    We present the first public data release of the GOGREEN (Gemini Observations of Galaxies in Rich Early Environments) and GCLASS (Gemini CLuster Astrophysics Spectroscopic Survey) surveys of galaxies in dense environments, spanning a redshift range 0.8 <z <1.5. The surveys consist of deep, multiwavelength photometry and extensive Gemini GMOS spectroscopy of galaxies in 26 overdense systems ranging in halo mass from small groups to the most massive clusters. The objective of both projects was primarily to understand how the evolution of galaxies is affected by their environment, and to determine the physical processes that lead to the quenching of star formation. There was an emphasis on obtaining unbiased spectroscopy over a wide stellar mass range (M greater than or similar to 2 x 10(10) M-circle dot), throughout and beyond the cluster virialized regions. The final spectroscopic sample includes 2771 unique objects, of which 2257 have reliable spectroscopic redshifts. Of these, 1704 have redshifts in the range 0.8 <z <1.5, and nearly 800 are confirmed cluster members. Imaging spans the full optical and near-infrared wavelength range, at depths comparable to the UltraVISTA survey, and includes Hubble Space Telescope/Wide Field Camera 3 F160W (GOGREEN) and F140W (GCLASS). This data release includes fully reduced images and spectra, with catalogues of advanced data products including redshifts, line strengths, star formation rates, stellar masses, and rest-frame colours. Here, we present an overview of the data, including an analysis of the spectroscopic completeness and redshift quality.