Browsing by Subject "SULFUR"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Silvonen, Soila; Niemistö, Juha; Csibrán, Adrián; Jilbert, Tom; Torma, Péter; Krámer, Tamás; Nurminen, Leena; Horppila, Jukka (2021)
    Hypolimnetic withdrawal (HW) is a lake restoration method that is based on the removal of phosphorus (P) along with near-bottom water. While it has often proven to be effective, the method also sets challenges: it is about balancing between effective P removal and maintenance of the thermal stratification of the lake. The success of different HW projects has been reviewed in some studies retrospectively, but scientific literature still lacks studies that use detailed data on the lake biogeochemistry to scale and optimize the method in advance, and to predict the outcomes of the restoration measure. In the current study, we investigated the seasonal biogeochemistry, P stocks and thermal stratification of a eutrophic lake (Lake Kymijarvi/Myllypohja basin, southern Finland) to determine an optimal withdrawal rate, to assess its effects on stratification, and to evaluate the expected success of HW. We found that by adjusting HW with P diffusive fluxes from the sediment (diffusion-adjusted HW), it is possible to remove a notable part of the cycling P without causing major disturbances to the thermal stratification even in a relatively shallow lake. Our results show that HW can have great potential in lake restoration: diffusion-adjusted HW in our study lake could increase the annual P output by 35-46%, shifting the P budget of the lake to negative. We thus propose a novel approach to optimize HW on the basis of the diffusive flux of P from the sediment, with the goal of extracting P continuously at an equivalent rate to the diffusive flux. We finally discuss how this can be achieved more effectively with HW based on a closed-circuit system. (c) 2020 The Authors. Published by Elsevier B.V.
  • Kok, L.; van Zyl, P. G.; Beukes, J. P.; Swartz, J-S; Burger, R. P.; Ellis, Suria; Josipovic, M.; Vakkari, V.; Laakso, L.; Kulmala, M. (2021)
    Relatively limited data have been published on the chemical composition of wet deposition for South Africa, which is considered an important source region for atmospheric pollutants. Concentrations and wet deposition fluxes of ionic species determined in rain samples collected from December 2014 to April 2018 at a regional site, Welgegund, are presented, and contextualised by wet deposition composition in the northeastern interior of South Africa. 89% of rain samples collected during the sampling period complied with the data quality objectives of the World Meteorological Organisation. The total ionic concentration of rainwater at Welgegund was similar to that at two regional sites located within proximity of industrial activities. The pH of rainwater (4.80) was comparable to that determined at two rural background sites, which indicated increased neutralisation. Similarly to the other sites located in the South African interior, SO42- was the most abundant species in rain, with concentrations thereof in the same order as SO42- levels determined at the two industrially influenced sites. Lower sulphur and nitrogen fluxes at Welgegund were attributed to lower average annual rainfall. The anthropogenic (industrial) source group had the largest contribution to wet deposition chemical composition, which signified the influence of major source regions in the South African interior that impact Welgegund. Relatively large contributions were also calculated from marine and crustal sources. The influence of agricultural activities was also evident, while biomass burning had the lowest contribution due to open biomass burning occurring mainly during the dry season
  • Das, Biswanath; Al-Hunaiti, Afnan; Sanchez-Eguia, Brenda N.; Zeglio, Erica; Demeshko, Serhiy; Dechert, Sebastian; Braunger, Steffen; Haukka, Matti; Repo, Timo; Castillo, Ivan; Nordlander, Ebbe (2019)
    The new di- and tetranuclear Fe(III) mu-oxido complexes [Fe-4(mu-O)(4) (PTEBIA)(4)]CF3SO3)(4)(CH3CN)(2)] (1a) , [Fe-2(mu-O)Cl-2(PTEBIA)(2)(CF3SO3)(2) (1b), and [Fe-2(mu-O)(HCOO)(2)(PTEBIA)(2)](ClO4)(2) (MeOH) (2) were prepared from the sulfur-containing ligand (2-((2,4-dimethylphenyl)thiO)-N,N-bis ((1-methyl-benzimidazol-2-yl)methyl)ethanamine (PTEBIA). The tetrairon complex 1a features four mu-oxido bridges, while in dinuclear 1b, the sulfur moiety of the ligand occupies one of the six coordination sites of each Fe(III) ion with a long Fe-S distance of 2.814(6) angstrom . In 2, two Fe(III) centers are bridged by one oxido and two formate units, the latter likely formed by methanol oxidation. Complexes 1a and 1 b show broad sulfur-toiron charge transfer bands around 400-430 nm at room temperature, consistent with mononuclear structures featuring Fe-S interactions. In contrast, acetonitrile solutions of 2 display a sulfur-to-iron charge transfer band only at low temperature (228 K) upon addition of H2O2/CH3COOH, with an absorption maximum at 410 nm. Homogeneous oxidative catalytic activity was observed for 1a and 1b using H2O2 as oxidant, but with low product selectivity. High valent iron-oxo intermediates could not be detected by UV-vis spectroscopy or ESI mass spectrometry. Rather, evidence suggest preferential ligand oxidation, in line with the relatively low selectivity and catalytic activity observed in the reactions.
  • Ebrahimi, Nashmin; Hartikainen, Helina; Simojoki, Asko; Hajiboland, Roghieh; Seppanen, Mervi (2015)
    The uptake by and subsequent translocation of selenium (Se) within the plant is dependent on its chemical form and soil properties that dictate this trace element's bioavailability. Plant species differ in their tendency to accumulate Se. Se taken-up by plants is returned to soil in plant residues, but the bioavailability of organic Se in those residues is poorly known. We investigated the impact of inorganic (Na2SeO4), organic (Se-enriched stem and leaf residues) Se applications and also soil microbial respiration on the growth and Se concentrations of various plant organs of oilseed rape (Brassica napus L.) during its development from the rosette to the seed filling stage. Both inorganic and organic Se slightly improved plant growth and enhanced plant development. Inorganic Se was more bioavailable than the organic forms and resulted in 3-fold to 6-fold higher Se concentrations in the siliques. Inorganic Se in autoclaved soil tended to elevate the Se concentration in all plant parts and at all growth stages. The organic Se raised Se concentrations in plants much less effectively than the inorganic selenate. Therefore, the use of inorganic Se is still recommended for biofortification.
  • Fuente, A.; Navarro, D. G.; Caselli, P.; Gerin, M.; Kramer, C.; Roueff, E.; Alonso-Albi, T.; Bachiller, R.; Cazaux, S.; Commercon, B.; Friesen, R.; Garcia-Burillo, S.; Giuliano, B. M.; Goicoechea, J. R.; Gratier, P.; Hacar, A.; Jimenez-Serra, Izaskun; Kirk, J.; Lattanzi, Fernando Alfredo; Loison, J. C.; Malinen, J.; Marcelino, N.; Martin-Domenech, R.; Munoz-Caro, G.; Pineda, J.; Tafalla, M.; Tercero, B.; Ward-Thompson, D.; Trevino-Morales, S. P.; Riviere-Marichalar, P.; Roncero, O.; Vidal, T.; Ballester, M. Y. (2019)
    GEMS is an IRAM 30 m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud Taurus molecular cloud (TMC) 1. Extensive millimeter observations have been carried out with the IRAM 30 m telescope (3 and 2mm) and the 40 m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A(v) similar to 3 to similar to 20 mag. Two phases with differentiated chemistry can be distinguished: (i) the translucent envelope with molecular hydrogen densities of 1-5 x 10(3) cm(-3); and (ii) the dense phase, located at A(v) > 10 mag, with molecular hydrogen densities >10(4) cm(-3). Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A(v) similar to 3 mag) where C/H similar to 8 x 10(-5) and C/O similar to 0.8-1, until the beginning of the dense phase at A(v) similar to 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate an S/H similar to (0.4-2.2) x 10(-6), an abundance similar to 7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H similar to 8 x 10(-8)). Based on our chemical modeling, we constrain the value of zeta(H2) to similar to(0.5-1.8) x 10(-16) s(-1) in the translucent cloud.