Browsing by Subject "SULFURIC ACID-AMINE"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Frege, Carla; Bianchi, Federico; Molteni, Ugo; Trostl, Jasmin; Junninen, Heikki; Henne, Stephan; Sipilä, Mikko; Herrmann, Erik; Rossi, Michel J.; Kulmala, Markku; Hoyle, Christopher R.; Baltensperger, Urs; Dommen, Josef (2017)
    The ion composition at high altitude (3454 m a.s.l.) was measured with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF) during a period of 9 months, from August 2013 to April 2014. The negative mass spectra were dominated by the ions of sulfuric, nitric, malonic, and methanesulfonic acid (MSA) as well as SO5. The most prominent positive ion peaks were from amines. The other cations were mainly organic compounds clustered with a nitrogen-containing ion, which could be either NH4+ or an aminium. Occasionally the positive spectra were characterized by groups of compounds each differing by a methylene group. In the negative spectrum, sulfuric acid was always observed during clear sky conditions following the diurnal cycle of solar irradiation. On many occasions we also saw a high signal of sulfuric acid during nighttime when clusters up to the tetramer were observed. A plausible reason for these events could be evaporation from particles at low relative humidity. A remarkably strong correlation between the signals of SO5 and CH3SO3- was observed for the full measurement period. The presence of these two ions during both the day and the night suggests a non-photochemical channel of formation which is possibly linked to halogen chemistry. Halogenated species, especially Br- and IO3-, were frequently observed in air masses that originated mainly from the Atlantic Ocean and occasionally from continental areas based on back trajectory analyses. We found I2O5 clustered with an ion, a species that was proposed from laboratory and modeling studies. All halogenated ions exhibited an unexpected diurnal behavior with low values during daytime. New particle formation (NPF) events were observed and characterized by (1) highly oxygenated molecules (HOMs) and low sulfuric acid or (2) ammonia-sulfuric acid clusters. We present characteristic spectra for each of these two event types based on 26 nucleation episodes. The mass spectrum of the ammonia-sulfuric acid nucleation event compares very well with laboratory measurements reported from the CLOUD chamber. A source receptor analysis indicates that NPF events at the Jungfraujoch take place within a restricted period of time of 24-48 h after air masses have had contact with the boundary layer. This time frame appears to be crucial to reach an optimal oxidation state and concentration of organic molecules necessary to facilitate nucleation.
  • Duporte, Geoffroy; Riva, Matthieu; Parshintsev, Jevgeni; Heikkinen, Enna; Barreira, Luis M. F.; Myllys, Nanna; Heikkinen, Liine; Hartonen, Kari; Kulmala, Markku; Ehn, Mikael; Riekkola, Marja-Liisa (2017)
    Amines are recognized as key compounds in new particle formation (NPF) and secondary organic aerosol (SOA) formation. In addition, ozonolysis of a-pinene contributes substantially to the formation of biogenic SOAs in the atmosphere. In the present study, ozonolysis of a-pinene in the presence of dimethylamine (DMA) was investigated in a flow tube reactor. Effects of amines on SOA formation and chemical composition were examined. Enhancement of NPF and SOA formation was observed in the presence of DMA. Chemical characterization of gas and particle-phase products by high-resolution mass spectrometric techniques revealed the formation of nitrogen containing compounds. Reactions between ozonolysis reaction products of a-pinene, such as pinonaldehyde or pinonic acid, and DMA were observed. Possible reaction pathways are suggested for the formation of the reaction products. Some of the compounds identified in the laboratory study were also observed in aerosol samples (PM1) collected at the SMEAR II station (Hyytiala, Finland) suggesting that DMA might affect the ozonolysis of a-pinene in ambient conditions.
  • Simon, Mario; Heinritzi, Martin; Herzog, Stephan; Leiminger, Markus; Bianchi, Federico; Praplan, Arnaud; Dommen, Josef; Curtius, Joachim; Kuerten, Andreas (2016)
    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)(2)NH) using the NO3-center dot(HNO3)(1-2)center dot(DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and similar to 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38% RH.
  • Dada, Lubna; Lehtipalo, Katrianne; Kontkanen, Jenni; Nieminen, Tuomo; Baalbaki, Rima; Ahonen, Lauri; Duplissy, Jonathan; Yan, Chao; Chu, Biwu; Petäjä, Tuukka; Lehtinen, Kari; Kerminen, Veli-Matti; Kulmala, Markku; Kangasluoma, Juha (2020)
    Atmospheric new particle formation (NPF), which is observed in many environments globally, is an important source of boundary-layer aerosol particles and cloud condensation nuclei, which affect both the climate and human health. To better understand the mechanisms behind NPF, chamber experiments can be used to simulate this phenomenon under well-controlled conditions. Recent advancements in instrumentation have made it possible to directly detect the first steps of NPF of molecular clusters (similar to 1-2 nm in diameter) and to calculate quantities such as the formation and growth rates of these clusters. Whereas previous studies reported particle formation rates as the flux of particles across a specified particle diameter or calculated them from measurements of larger particle sizes, this protocol outlines methods to directly quantify particle dynamics for cluster sizes. Here, we describe the instrumentation and analysis methods needed to quantify particle dynamics during NPF of sub-3-nm aerosol particles in chamber experiments. The methods described in this protocol can be used to make results from different chamber experiments comparable. The experimental setup, collection and post-processing of the data, and thus completion of this protocol, take from months up to years, depending on the chamber facility, experimental plan and level of expertise. Use of this protocol requires engineering capabilities and expertise in data analysis.
  • Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurten, T.; Rissanen, Matti; Wahner, A.; Wildt, J. (2015)
    It has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapors and possibly contributes a significant fraction to atmospheric SOA (secondary organic aerosol). The sequential rearrangement of peroxy radicals and subsequent O-2 addition results in ELVOC which are highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early particle growth is that their formation is induced by one attack of the oxidant (here O-3), followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g., for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM. To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologous series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer (APi-TOF-MS) equipped with a NO3--chemical ionization (CI) source. In the case of O-3 acting as an oxidant, the starting peroxy radical is formed on the so-called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analyzing the observed mass spectra and narrowing down the likely formation path. As consequence, we propose that HOM are multifunctional percarboxylic acids, with carbonyl, hydroperoxy, or hydroxy groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cycloalkenes, autoxidation was limited to both terminal C atoms and two further C atoms in the respective alpha positions. In more complex molecules containing tertiary H atoms or small, constrained rings, even higher oxidation degrees were possible, either by simple H shift of the tertiary H atom or by initialization of complex ring-opening reactions.
  • Kim, J.; Ahlm, L.; Yli-Juuti, T.; Lawler, M.; Keskinen, H.; Tröestl, J.; Schobesberger, S.; Duplissy, J.; Amorim, A.; Bianchi, F.; Donahue, N. M.; Flagan, R. C.; Hakala, J.; Heinritzi, M.; Jokinen, T.; Kuerten, A.; Laaksonen, A.; Lehtipalo, K.; Miettinen, P.; Petäjä, T.; Rissanen, M. P.; Rondo, L.; Sengupta, K.; Simon, M.; Tome, A.; Williamson, C.; Wimmer, D.; Winkler, P. M.; Ehrhart, S.; Ye, P.; Kirkby, J.; Curtius, J.; Baltensperger, U.; Kulmala, M.; Lehtinen, K. E. J.; Smith, J. N.; Riipinen, I.; Virtanen, A. (2016)
    Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study,we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at sub-saturated conditions (ca. 90% relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from alpha-pinene oxidation. The hygroscopicity parameter kappa decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5.1 x 10(6) molecules cm(-3) in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured kappa of 15 nm particles was 0.31 +/- 0.01: close to the value reported for dimethylaminium sulfate (DMAS) (kappa(DMAS) similar to 0.28). Furthermore, the difference in kappa between sulfuric acid and sulfuric acid-dimethylamine experiments increased with increasing particle size. The kappa values of particles in the presence of sulfuric acid and organics were much smaller than those of particles in the presence of sulfuric acid and dimethylamine. This suggests that the organics produced from alpha-pinene ozonolysis play a significant role in particle growth even at 10 nm sizes.
  • Lehtipalo, Katrianne; Leppä, Johannes; Kontkanen, Jenni; Kangasluoma, Juha; Franchin, Alessandro; Wimnner, Daniela; Schobesberger, Siegfried; Junninen, Heikki; Petäjä, Tuukka; Sipilä, Mikko; Mikkilä, Jyri; Vanhanen, Joonas; Worsnop, Douglas R.; Kulmala, Markku (2014)