Browsing by Subject "SUPERCONDUCTIVITY"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Väyrynen, Katja; Hatanpää, Timo; Mattinen, Miika; Mizohata, Kenichiro; Meinander, Kristoffer; Räisänen, Jyrki; Link, Joosep; Stern, Raivo; Ritala, Mikko; Leskela, Markku (2019)
    Intermetallics form a versatile group of materials that possess unique properties ranging from superconductivity to giant magnetoresistance. The intermetallic Co-Sn and Ni-Sn compounds are promising materials for magnetic applications as well as for anodes in lithium- and sodium-ion batteries. Herein, a method is presented for the preparation of Co3Sn2 and Ni3Sn2 thin films using diamine adducts of cobalt(II) and nickel(II) chlorides, CoCl2(TMEDA) and NiCl2(TMPDA) (TMEDA = N,N,N ',N '-tetramethylethylenediamine, TMPDA = N,N,N ',N '-tetramethyl-1,3-propanediamine) combined with tributyltin hydride. The films are grown by atomic layer deposition (ALD), a technique that enables conformal film deposition with sub-nanometer thickness control. The Co3Sn2 process fulfills the typical ALD qualifications, such as self-limiting growth, excellent film uniformity, and conformal coverage of a trench structure. X-ray diffraction (XRD) shows reflections characteristic to the hexagonal Co3Sn2 phase, which confirms that the films are, indeed, intermetallic instead of being mere alloys of Co and Sn. The films are extremely pure with impurity levels each below 1.0 at.%. Ni3Sn2 films similarly exhibit the expected XRD reflections for the intermetallic phase and are of high purity. The Co3Sn2 film show magnetic hysteresis with high coercivity values exceeding 500 Oe, indicating great potential in terms of applicability of the films.
  • Tureanu, Anca (2018)
    We formulate the quantum field theory description of neutron-antineutron oscillations in the framework of canonical quantization, in analogy with the Bardeen-Cooper-Schrieffer theory and the Nambu-Jona-Lasinio model. The physical vacuum of the theory is a condensate of pairs of would-be neutrons and antineutrons in the absence of the baryon-number violating interaction. The quantization procedure defines uniquely the mixing of massive Bogoliubov quasiparticle states that represent the neutron. In spite of not being mass eigenstates, neutron and antineutron states are defined on the physical vacuum and the oscillation formulated in asymptotic states. The exchange of the baryonic number with the vacuum condensate engenders what may be observed as neutron-antineutron oscillation. The convergence between the present canonical approach and the Lagrangian/path integral approach to neutron oscillations is shown by the calculation of the anomalous (baryon-number violating) propagators. The quantization procedure proposed here can be extended to neutrino oscillations and, in general, to any particle oscillations.
  • Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew (2017)
    The choice of statistics for a quantum particle is almost always a discrete one: either bosonic or fermionic. Anyons are the exceptional case for which the statistics can take a range of intermediate values. Holography provides an opportunity to address the question of how the behavior of interacting anyons depends on the choice of statistics. In this paper, we analyze the spectrum of a strongly coupled, gapless fluid of anyons described holographically by the D3-D7' model with alternative boundary conditions. We investigate how these alternative boundary conditions impact the instability of the gapless homogeneous phase toward the formation of spatial order. In addition, we also show that for a particular, limiting choice of the alternative boundary conditions, this holographic system can be interpreted as describing strongly coupled (2 + 1)-dimensional QED. In this case, the instability leads to a spontaneous, spatially modulated magnetic field.
  • Baldassarre, L.; Perucchi, A.; Mitrano, M.; Nicoletti, D.; Marini, C.; Pontiroli, D.; Mazzani, M.; Aramini, M.; Ricco, M.; Giovannetti, G.; Capone, M.; Lupi, S. (2015)
    Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below T-c = 38 K. The superconducting dome present in the T - P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations.