Browsing by Subject "SUPEROXIDE-DISMUTASE"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Huang, Yue; Zou, Jie; Kang, Zongjing; Zhang, Xiaoping; Penttinen, Petri; Zhang, Xiaoping; Li, Xiaolin (2021)
    We inoculated Tuber aestivum and Tuber sinoaestivum on Carya illinoinensis to explore the effects of inoculation on host plant growth, enzyme activities, the physicochemical properties of rhizosphere soil, the denitrifying bacterial community in the rhizosphere, and the distribution of mating type genes in the rhizosphere. We found that the Tuber spp. inoculation increased the height of the host plant and that the stem circumference of the host was greater two months after inoculation. Six months after inoculation, the peroxidase activity of the seedlings inoculated with T. sinoaestivum was higher than that of the control. At four and six months after inoculation, the superoxidase dismutase activities of the seedlings inoculated with T. aestivum were higher than those of the seedlings inoculated with T. sinoaestivum. Six months after inoculation, nitrate nitrogen content was lowest in the control and highest in the T. sinoaestivum treatment. Among the nirS-type denitrifying bacteria community, the relative abundances of Proteobacteria were high. T. aestivum and T. sinoaestivum inoculation did not affect the diversity of denitrifying bacteria. The mating type genes MAT1-1-1 and MAT1-2-1 were detected in the rhizosphere of C. illinoinensis inoculated with T. sinoaestivum and T. aestivum, and MAT1-1-1 dominated over MAT1-21. (c) 2021 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
  • Byts, Nadiya; Sharma, Subodh; Laurila, Jenny; Paudel, Prodeep; Miinalainen, Ilkka; Ronkainen, Veli-Pekka; Hinttala, Reetta; Törnquist, Kid; Koivunen, Peppi; Myllyharju, Johanna (2021)
    Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A trans membrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm(-/-) mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm(-/-) primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm(-/-) cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm(-/-) astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.