Browsing by Subject "SYLVESTRIS"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Virjamo, Virpi; Fyhrquist, Pia; Koskinen, Akseli; Lavola, Anu; Nissinen, Katri; Julkunen-Tiitto, Riitta (2020)
    Knowledge about the defensive chemistry of coniferous trees has increased in recent years regarding a number of alkaloid compounds; in addition to phenolics and terpenes. Here, we show that Norway spruce (Picea abies (L.) H. Karst.), an important boreal zone tree species; accumulates 1,6-dehydropinidine (2-methyl-6-(2-propenyl)-1,6-piperideine) in its needles and bark. We reanalyzed previously published GC-MS data to obtain a full picture of 1,6-dehydropinidine in P. abies. 1,6-dehydropinidine appeared to especially accumulate in developing spring shoots. We used solid-phase partitioning to collect the alkaloid fraction of the sprouts and thin-layer chromatography to purify 1,6-dehydropinidine. The antibacterial properties of the 1,6-dehydropinidine fraction were tested using a broth microdilution method; with Streptococcus equi subsp. equi as a model organism. Based on our results 1,6-dehydropinidine is common in alkaloid extractions from P. abies (0.4 +/- 0.03 mg g(-1) dw in mature needles) and it is especially abundant in young spruce shoots (2.7 +/- 0.5 mg g(-1) dw). Moreover; 1,6-dehydropinidine extracted from P. abies sprouts showed mild antibacterial potential against Streptococcus equi subsp. equi (MIC 55 mu g mL(-1)). The antibacterial activity of a plant compound thought of as an intermediate rather than an end-product of biosynthesis calls for more detailed studies regarding the biological function of these coniferous alkaloids
  • Portillo-Estrada, Miguel; Pihlatie, Mari; Korhonen, Janne F. J.; Levula, Janne; Frumau, Arnoud K. F.; Ibrom, Andreas; Lembrechts, Jonas J.; Morillas, Lourdes; Horvath, Laszlo; Jones, Stephanie K.; Niinemets, Uelo (2016)
    Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6-11.4 degrees C in annual temperature 511-878mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (M-r). M-r and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.
  • Zweifel, Roman; Etzold, Sophia; Sterck, Frank; Gessler, Arthur; Anfodillo, Tommaso; Mencuccini, Maurizio; von Arx, Georg; Lazzarin, Martina; Haeni, Matthias; Feichtinger, Linda; Meusburger, Katrin; Knuesel, Simon; Walthert, Lorenz; Salmon, Yann; Bose, Arun K.; Schoenbeck, Leonie; Hug, Christian; De Girardi, Nicolas; Giuggiola, Arnaud; Schaub, Marcus; Rigling, Andreas (2020)
    Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.
  • Raatevaara, Antti; Korpunen, Heikki; Tiitta, Markku; Tomppo, Laura; Kulju, Sampo; Antikainen, Jukka; Uusitalo, Jori (2020)
    Scots pine (Pinus sylvestris L.) heartwood is naturally durable wood material which has not been fully utilized in the wood industry. Currently, there are no practical measurement methods for detecting and measuring heartwood in a tree harvesting. The objective of this study was to evaluate the applicability of an electrical impedance spectroscopy and an image analysis of a log end face for pine heartwood measurements from the harvesting perspective. Both methods were tested with a fresh wood material which was collected during the harvesting operations. The results indicate that both methods have potential to measure the heartwood from processed stems with an average heartwood diameter error being less than two centimeters for each method. However, the image analysis of the log end face is only appropriate when visible contrast between the heartwood and a sapwood exists. Our findings indicate that the studied heartwood detection methods show great potential in measuring the heartwood of the stem in the harvesting phase which would ideally benefit later links in wood value chains.
  • Zubizarreta-Gerendiain, Ane; Pellikka, Petri; Garcia-Gonzalo, Jordi; Ikonen, Veli-Pekka; Peltola, Heli (2012)
  • Kosunen, Maiju; Kantola, Tuula; Starr, Mike; Blomqvist, Minna; Talvitie, Mervi; Lyytikäinen-Saarenmaa, Päivi (2017)
    Insect herbivore disturbances are likely to intensify as a consequence of climate change. In Finland, outbreaks of the common pine sawfly (Diprion pini L.), which feeds on Scots pine (Pinus sylvestris L.) needles, and resulting damage to forests have already increased. Although drivers of sawfly outbreak dynamics have been investigated, the effects of topography and soil fertility have not been fully elucidated. We studied the effect of elevation, slope and soil properties (carbon and nitrogen contents, C/N ratio, pH, texture and horizon thicknesses) on the defoliation intensity of 28 plots (227-531 m(2)), located in a 34.5 km(2) forested area in eastern Finland suffering from an extended outbreak of D. pini. Plot elevation and slope (relative relief 35 m, maximum elevation 200 m a. s.l.) were derived from a digital elevation model and the soil properties from samples of the humus layer (Of + Oh), (Ah+) E and B horizons of podzol profiles. Defoliation was greater on the more fertile and flatter sites than on less fertile and steeper sites, but independent of elevation. The soil property most strongly correlated to plot mean defoliation was the C/N ratio of the humus layer (Spearman's rho = -0.68). However, logistic modelling showed that the thickness of the (Ah+) E-horizon had the highest classification accuracy in predicting the probability of a plot having moderate to severe (> 20%) defoliation. Our study showed that forest damage caused by D. pini was related to topography and soil fertility. Taking these factors into account could help in understanding the population dynamics of D. pini, in modeling of insect outbreaks and in forest management planning.
  • Raatevaara, Antti; Korpunen, Heikki; Mäkinen, Harri; Uusitalo, Jori (2020)
    In cut-to-length logging, the harvester operator adjusts the bucking in accordance with visible defects on processed stems. Some of the defects, such as a sweep on the bottom of the stem, decrease the yield and quality of sawn products and are difficult for the operator to notice. Detecting the defects with improved sensors would support the operator in his qualitative decision-making and increase value recovery of logging. Predicting the maximum bow height of the bottom log in Norway spruce (Picea abies (L.) Karst.) with log end face image and stem taper was investigated with two modelling approaches. A total of 101 stems were selected from five clear-cut stands in southern Finland. The stems were crosscut and taper measured, and the butt ends of the bottom logs were photographed. The stem diameter, out-of-roundness, and pith eccentricity were measured from the images while the max. bow height was measured by a 3D log scanner at a sawmill. The bottom logs with an eccentric pith had higher max. bow height. In addition, a highly conical bottom part of the stem was more common on the bottom logs with a large max. bow height. Applying both log end face image and stem taper measurements gave the best model fit and detection accuracy (76%) for bottom logs with a large max. bow height. The results indicate that the log end face image and stem taper measurements can be utilised to aid harvester operator in deciding an optimised length for logs according to the bow height.
  • Mikola, Juha Tapio; Silfver, Tarja Hannele; Rousi, Matti (2018)
    Facilitative plant-plant interactions are common in harsh environments such as Arctic and alpine tree lines. In Fennoscandia, mountain birch dominates tree lines, but mixes with Scots pine in less severe areas. Using over 30-yr. old Scots pine common gardens, established at three locations near the present Scots pine tree line, we tested (1) if mountain birch can facilitate Scots pine numbers and (2) if improved soil fertility under mountain birch canopies has a role in facilitation. We counted the number of pines within 1-m and 3-m radii of the tallest mountain birch vs. a random spot in 70-75 planting plots and sampled soil for nutrients at 0.3-, 1- and 3-m distance to the birch in ten plots in each location. Number of Scots pines was 29% higher within a 1-m radius of a mountain birch than of a random spot. This effect did not depend on location, although the locations differed significantly in soil fertility, and no effect was detected within a 3-m radius. Concentrations of water, NH4, NO3 and PO4 decreased significantly with increasing distance to a mountain birch, but only in the least fertile location. Mountain birch can significantly facilitate Scots pine in tree line conditions. However, unlike we expected, improved soil fertility under birch canopies may not have a general role in facilitation.
  • Hari, Pertti; Aakala, Tuomas; Aalto, Juho; Back, Jaana; Hollmen, Jaakko; Jogiste, Kalev; Koupaei, Kourosh Kabiri; Kahkonen, Mika A.; Korpela, Mikko; Kulmala, Liisa; Nikinmaa, Eero; Pumpanen, Jukka; Salkinoja-Salonen, Mirja; Schiestl-Aalto, Pauliina; Simojoki, Asko; Havimo, Mikko (2017)
    Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.
  • de Quesada Alzamora, Gonzalo E; Kuuluvainen, Timo (2020)
    Background Forest structural and compositional variability is of fundamental importance for forest ecosystem functioning and species diversity. The purpose of this research was to examine how human impact has affected the compositional-structural diversity of mature pine-dominated boreal forest in boreal Fennoscandia. For this a new approach was used, based on the classification of tree sizes by the diameter at breast height (dbh) and tree species, resulting in a new variable, the diametric-species, the variation of which describes the compositional-structural diversity of the forest. This variable was used to compare the structural-compositional diversity among three forest classes with different degree of human influence, using rarefaction as the main tool of analysis, complemented by analyses based on common diversity indices. Results The results showed that the near-natural forest was the most diverse and the managed forest the least diverse. On the other hand, the diversity of near-natural and selectively logged forests were similar, suggesting that selectively logged forests are equal to the natural forest in their compositional-structural diversity. The analysis solely on tree species showed no significant differences among the forest classes of different human impact. The Shannon diversity index showed no significant difference between the forest classes for the diametric-species and tree species classifications only, but the Simpson index signaled a slight difference between the selectively logged and managed forest classes for the diametric-species classification. Furthermore, the Sorensen index detected a difference among forest classes in the diametric-species classification. Conclusions Forest utilization had an adverse impact on forest compositional-structural diversity of mature Scots pine forests. The analysis also shows that the novel approach based on diametric-species classification could be a useful tool for forest diversity analysis and comparison, especially in species-poor forests such as the boreal forest.