Browsing by Subject "SYMMETRIC DIMETHYLARGININE"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Seppala, Ilkka; Kleber, Marcus E.; Bevan, Steve; Lyytikainen, Leo-Pekka; Oksala, Niku; Hernesniemi, Jussi A.; Makela, Kari-Matti; Rothwell, Peter M.; Sudlow, Cathie; Dichgans, Martin; Mononen, Nina; Vlachopoulou, Efthymia; Sinisalo, Juha; Delgado, Graciela E.; Laaksonen, Reijo; Koskinen, Tuomas; Scharnagl, Hubert; Kahonen, Mika; Markus, Hugh S.; Maez, Winfried; Lehtimaki, Terho (2016)
    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44-2.74) and chronic AF (OR = 2.03, 95% CI 1.35-3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications.
  • Puurunen, Jenni; Tiira, Katriina; Vapalahti, Katariina; Lehtonen, Marko; Hanhineva, Kati; Lohi, Hannes (2018)
    Anxiety-related disorders, including fearfulness are common and leading welfare problems among the worldwide dog population. The etiology of anxieties is complex and affected by genetic and environmental factors. Thus, there is a need for more comprehensive approaches, such as metabolomics, to understand the causes of anxiety and to identify anxiety-related biomarkers for more efficient diagnostic and treatment options. To study metabolic alterations related to canine fearfulness, a non-targeted plasma metabolite profiling was performed in a cohort of 20 fearful and 21 non-fearful dogs. The results showed that nine metabolic features were significantly associated with fearfulness. The most prominent change included increased plasma glutamine and gamma-glutamyl glutamine (gamma-Glu Gln) in fearful dogs across breeds. Alterations in glutamine metabolism have previously been associated with several psychiatric disorders, indicating the relevance of this finding also in dogs. In addition, we describe a novel breed-specific association between renal biomarker symmetric dimethylarginine (SDMA) and canine fearfulness. These observed metabolic alterations may result from high levels of prolonged psychological stress in fearful dogs.