Browsing by Subject "Sentinel-2"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Abdi, Abdulhakim; Carrié, Romain; Sidemo-Holm, William; Cai, Zhanzhang; Boke Olén, Niklas; Smith, Henrik G; Eklundh, Lars; Ekroos, Johan Edvard (2021)
    Increasing land-use intensity is a main driver of biodiversity loss in farmland, but measuring proxies for land-use intensity across entire landscapes is challenging. Here, we develop a novel method for the assessment of the impact of land-use intensity on biodiversity in agricultural landscapes using remote sensing parameters derived from the Sentinel-2 satellites. We link crop phenology and productivity parameters derived from time-series of a two-band enhanced vegetation index with biodiversity indicators (insect pollinators and insect-pollinated vascular plants) in agricultural fields in southern Sweden, with contrasting land management (i.e. conventional and organic farming). Our results show that arable land-use intensity in cereal systems dominated by spring-sown cereals can be approximated using Sentinel-2 productivity parameters. This was shown by the significant positive correlations between the amplitude and maximum value of the enhanced vegetation index on one side and farmer reported yields on the other. We also found that conventional cereal fields had 17% higher maximum and 13% higher amplitude of their enhanced vegetation index than organic fields. Sentinel-2 derived parameters were more strongly correlated with the abundance and species richness of bumblebees and the richness of vascular plants than the abundance and species richness of butterflies. The relationships we found between biodiversity and crop production proxies are consistent with predictions that increasing agricultural land-use intensity decreases field biodiversity. The newly developed method based on crop phenology and productivity parameters derived from Sentinel-2 data serves as a proof of concept for the assessment of the impact of land-use intensity on biodiversity over cereal fields across larger areas. It enables the estimation of arable productivity in cereal systems, which can then be used by ecologists and develop tools for land managers as a proxy for land-use intensity. Coupled with spatially explicit databases on agricultural land-use, this method will enable crop-specific cereal productivity estimation across large geographical regions.
  • Olsson, Per-Ola; Kantola, Tuula; Lyytikäinen-Saarenmaa, Päivi; Jönsson, Anna Maria; Eklundh, Lars (2016)
    We investigated if coarse-resolution satellite data from the MODIS sensor can be used for regional monitoring of insect disturbances in Fennoscandia. A damage detection method based on z-scores of seasonal maximums of the 2-band Enhanced Vegetation Index (EVI2) was developed. Time-series smoothing was applied and Receiver Operating Characteristics graphs were used for optimisation. The method was developed in fragmented and heavily managed forests in eastern Finland dominated by Scots pine (Pinus sylvestris L.) (pinaceae) and with defoliation of European pine sawfly (Neodiprion sertifer Geoffr.) (Hymenoptera: Diprionidae) and common pine sawfly (Diprion pini L.) (Hymenoptera: Diprionidae). The method was also applied to subalpine mountain birch (Betula pubescens ssp. Czerepanovii N. I. Orlova) forests in northern Sweden, infested by autumnal moth (Epirrita autumnata Borkhausen) and winter moth (Operophtera brumata L.). In Finland, detection accuracies were fairly low with 50% of the damaged stands detected, and a misclassification of healthy stands of 22%. In areas with long outbreak histories the method resulted in extensive misclassification. In northern Sweden accuracies were higher, with 75% of the damage detected and a misclassification of healthy samples of 19%. Our results indicate that MODIS data may fail to detect damage in fragmented forests, particularly when the damage history is long. Therefore, regional studies based on these data may underestimate defoliation. However, the method yielded accurate results in homogeneous forest ecosystems and when long-enough periods without damage could be identified. Furthermore, the method is likely to be useful for insect disturbance detection using future medium-resolution data, e. g. from Sentinel-2.
  • Pitkänen, Timo P.; Sirro, Laura; Häme, Lauri; Häme, Tuomas; Törmä, Markus; Kangas, Annika (ScienceDirect, 2020)
    International Journal of Applied Earth Observation and Geoinformation 86 (2020)
    The majority of the boreal forests in Finland are regularly thinned or clear-cut, and these actions are regulated by the Forest Act. To generate a near-real time tool for monitoring management actions, an automatic change detection modelling chain was developed using Sentinel-2 satellite images. In this paper, we focus mainly on the error evaluation of this automatized workflow to understand and mitigate incorrect change detections. Validation material related to clear-cut, thinned and unchanged areas was collected by visual evaluation of VHR images, which provided a feasible and relatively accurate way of evaluating forest characteristics without a need for prohibitively expensive fieldwork. This validation data was then compared to model predictions classified in similar change categories. The results indicate that clear-cuts can be distinguished very reliably, but thinned stands exhibit more variation. For thinned stands, coverage of broadleaved trees and detections from certain single dates were found to correlate with the success of the modelling results. In our understanding, this relates mainly to image quality regarding haziness and translucent clouds. However, if the growing season is short and cloudiness frequent, there is a clear trade-off between the availability of good-quality images and their preferred annual span. Gaining optimal results therefore depends both on the targeted change types, and the requirements of the mapping frequency.
  • Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Honkavaara, Eija; Wittke, Samantha; Karjalainen, Mika; Puttonen, Eetu (Frontiers Reseach Foundation, 2019)
    Frontiers in Plant Science
    Monocultural land use challenges sustainability of agriculture. Pre-crop value indicates the benefits of a previous crop for a subsequent crop in crop sequencing and facilitates diversifi-cation of agricultural systems. Traditional field experiments are resource intensive and evaluate pre-crop values only for a limited number of previous and subsequent crops. We deve-loped a dynamic method based on Sentinel-2 derived Norma-lized Difference Vegetation Index (NDVI) values to estimate pre-crop values on a field parcel scale. The NDVI-values were compared to the region specific 90th percentile of each crop and year and thereby, an NDVI-gap was determined. The NDVI-gaps for each subsequent crop in the case of mo-nocultural crop sequencing were compared to that for other previous crops in rotation and thereby, pre-crop values for a high number of previous and subsequent crop combinations were estimated. The pre-crop values ranged from +16% to -16%. Especially grain legumes and rapeseed were valuable as pre-crops, which is well in line with results from field expe-riments. Such data on pre-crop values can be updated and expanded every year. For the first time, a high number of previous and following crop combinations, originating from farmer’s fields, is available to support diversification of cur-rently monocultural crop sequencing patterns in agriculture.
  • Junttila, Sofia; Kelly, Julia; Kljun, Natascha; Aurela, Mika; Klemedtsson, Leif; Lohila, Annalea; Nilsson, Mats B.; Rinne, Janne; Tuittila, Eeva-Stiina; Vestin, Patrik; Weslien, Per; Eklundh, Lars (2021)
    Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R-2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R-2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.
  • Halme, Eelis; Pellikka, Petri; Mõttus, Matti (2019)
    Three-quarters of Finland’s land surface area is filled with forests, which compose a great part of the country’s biomass, carbon pools and carbon sinks. In order to acquire up-to-date information on the forests, optical remote sensing techniques are commonly used. Moreover, in the future hyperspectral satellite missions will start providing data to support the needs of natural resource management practices, such as forestry. It is, however, unclear what would be the additional value from using hyperspectral data compared to multispectral in quantifying forest variables of Finnish boreal forest. In this study, we used the remote sensing data by hyperspectral AISA imager (128 bands, 400–1000 nm, resolution 0.7 m) and Sentinel-2 (10 bands, resolution 10 m) to assess the possible benefits of higher spectral resolution. As reference data, we used a new nationwide forest resource dataset (stand-level data), which has a high potential in further remote sensing applications. In addition, we used a set of independent in situ measurements (plot-level data) for validation. We applied two kernel-based machine learning regression algorithms (Gaussian process and support vector regression) to relate boreal forest variables with the remote sensing data. The variables of interest were mean height, basal area, leaf area index (LAI), stem biomass and main tree species. The regression algorithms were trained with stand-level data and estimations were evaluated with stand- and plot-level holdout sets. The estimation accuracies were examined with absolute and relative root-mean-square errors. Successful variable estimations showed that kernel-based regression algorithms are suitable tools for forest structure estimation. Based on the results, the additional value of hyperspectral remote sensing data in forest variable estimation in Finnish boreal forest is mainly related to variables with species-specific information, such as main tree species and LAI. The more interesting variables for forestry industry, such as mean height, basal area and stem biomass, can also be estimated accurately with more traditional multispectral remote sensing data.