Browsing by Subject "Small intestine"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Peuhkuri, Katri; Vapaatalo, Heikki; Korpela, Riitta (2011)
  • Gerritsen, Jacoline; Hornung, Bastian; Renckens, Bernadette; van Hijum, Sacha A. F. T.; dos Santos, Vitor A. P. Martins; Rijkers, Ger T.; Schaap, Peter J.; de Vos, Willem M.; Smidt, Hauke (2017)
    Background. The microbiota in the small intestine relies on their capacity to rapidly import and ferment available carbohydrates to survive in a complex and highly competitive ecosystem. Understanding how these communities function requires elucidating the role of its key players, the interactions among them and with their environment/host. Methods. The genome of the gut bacterium Romboutsia ilealis CRIBT was sequenced with multiple technologies (Illumina paired-end, mate-pair and PacBio). The transcriptome was sequenced (Illumina HiSeq) after growth on three different carbohydrate sources, and short chain fatty acids were measured via HPLC. Results. We present the complete genome of Romboutsia ilealis CRIBT, a natural inhabitant and key player of the small intestine of rats. R. ilealis CRIBT possesses a circular chromosome of 2,581,778 bp and a plasmid of 6,145 bp, carrying 2,351 and eight predicted protein coding sequences, respectively. Analysis of the genome revealed limited capacity to synthesize amino acids and vitamins, whereas multiple and partially redundant pathways for the utilization of different relatively simple carbohydrates are present. Transcriptome analysis allowed identification of the key components in the degradation of glucose, L-fucose and fructo-oligosaccharides. Discussion. This revealed that R. ilealis CRIBT is adapted to a nutrient-rich environment where carbohydrates, amino acids and vitamins are abundantly available.
  • Hietikko, Minna; Koskinen, Outi; Kurppa, Kalle; Laurila, Kaija; Saavalainen, Päivi; Salmi, Teea; Ilus, Tuire; Huhtala, Heini; Kaukinen, Katri; Lindfors, Katri (2018)
    BackgroundIn coeliac disease, ingestion of gluten induces the production of transglutaminase 2 (TG2)-targeted autoantibodies by TG2-specific plasma cells present at high frequency in the small intestinal mucosa in untreated disease. During treatment with a gluten-free diet (GFD), the number of these cells decreases considerably. It has not been previously investigated whether the cells are also present prior to development of villous atrophy, or in non-responsive patients and those with dietary lapses. We aimed to define the frequency of small bowel mucosal TG2-specific plasma cells in coeliac disease patients with varying disease activity, and to investigate whether the frequency correlates with serum and small intestinal TG2-targeting antibodies as well as mucosal morphology and the number of intraepithelial lymphocytes.ResultsMucosal TG2-specific plasma cells were found in 79% of patients prior to development of mucosal damage, in all patients with villous atrophy, and in 63% of the patients after 1 year on GFD. In these disease stages, TG2-specific plasma cells accounted for median of 2.3, 4.3, and 0.7% of all mucosal plasma cells, respectively. After long-term treatment, the cells were present in 20% of the patients in clinical remission (median 0%) and in 60% of the patients with poor dietary adherence (median 5.8%). In patients with non-responsive coeliac disease despite strict GFD, the cells were found in only one (9%) subject; the cells accounted for 2.4% of all plasma cells. A positive correlation between the percentage of TG2-specific plasma cells and serum TG2 antibody levels (r(S)=0.69, P
  • Hietikko, Minna; Koskinen, Outi; Kurppa, Kalle; Laurila, Kaija; Saavalainen, Päivi; Salmi, Teea; Ilus, Tuire; Huhtala, Heini; Kaukinen, Katri; Lindfors, Katri (BioMed Central, 2018)
    Abstract Background In coeliac disease, ingestion of gluten induces the production of transglutaminase 2 (TG2)-targeted autoantibodies by TG2-specific plasma cells present at high frequency in the small intestinal mucosa in untreated disease. During treatment with a gluten-free diet (GFD), the number of these cells decreases considerably. It has not been previously investigated whether the cells are also present prior to development of villous atrophy, or in non-responsive patients and those with dietary lapses. We aimed to define the frequency of small bowel mucosal TG2-specific plasma cells in coeliac disease patients with varying disease activity, and to investigate whether the frequency correlates with serum and small intestinal TG2-targeting antibodies as well as mucosal morphology and the number of intraepithelial lymphocytes. Results Mucosal TG2-specific plasma cells were found in 79% of patients prior to development of mucosal damage, in all patients with villous atrophy, and in 63% of the patients after 1 year on GFD. In these disease stages, TG2-specific plasma cells accounted for median of 2.3, 4.3, and 0.7% of all mucosal plasma cells, respectively. After long-term treatment, the cells were present in 20% of the patients in clinical remission (median 0%) and in 60% of the patients with poor dietary adherence (median 5.8%). In patients with non-responsive coeliac disease despite strict GFD, the cells were found in only one (9%) subject; the cells accounted for 2.4% of all plasma cells. A positive correlation between the percentage of TG2-specific plasma cells and serum TG2 antibody levels (rS = 0.69, P < 0.001) and the intensity of mucosal TG2-targeting IgA deposits (rS = 0.43, P < 0.001) was observed. Conclusions Our results show that TG2-specific plasma cells are already detectable prior to villous atrophy, and that generally their frequency increases during overt disease. By contrast, on GFD, the percentage of these cells decreases. Overall, the presence of TG2-specific plasma cells in the small bowel mucosa mirrors the presence of gluten in the diet, but the frequency is not always parallel to the level of serum or intestinal TG2 antibodies. These findings increase the knowledge about the development of the TG2 plasma cell responses especially in the early phases of coeliac disease.