Browsing by Subject "Soil"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Heiskanen, Juha; Hagner, Marleena; Ruhanen, Hanna; Maekitalo, Kari (2020)
    Mine closures require landscape reclamation to reduce the environmental risks of tailings fields. However, information about the feasibility of recyclable waste materials as a growth medium layer for the cover systems of mine tailings and their effects on vegetation restoration and reforestation success is scant especially in the boreal climate. This study examines the use of various recyclable by-products in improving vegetation success on reclaimed mine tailings. The physical and chemical properties of two wood biochar types, fibre clay, compost, tailings soil and forest till soil as well as their effects as growth media on the growth of several plant species during one growing period in a greenhouse were examined. Marked differences in the properties (e.g. pH, element concentrations, water retention) as well as in plant growth among the growth media were found. Fresh non-oxidized tailings soil showed high salt contents and electrical conductivity which together with fine soil texture provided the poorest or nonexistent plant growth. Fibre clay was the coarsest and driest material and also showed poor plant growth. Root and shoot growth was greatest in pure compost. All media without compost additive showed relatively poor growth which indicates the lack of nitrogen. The results suggest that forest till soil and biochar are the most suitable growth media for the cover systems of mine tailings when added with compost or another nitrogen source. Scots pine container seedlings, willow cuttings and sown red clover showed to be the most feasible plant species to be grown on boreal tailings covers.
  • Yan, Lijuan; Sinkko, Hanna; Penttinen, Petri; Lindström, Kristina (2016)
    The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ. (C) 2015 Elsevier B.V. All rights reserved.
  • Kuittinen, Matti; Hautamaki, Ranja; Tuhkanen, Eeva-Maria; Riikonen, Anu; Ariluoma, Mari (2021)
    Purpose Currently, no clear guidance exists for ISO and EN standards of calculating, verifying, and reporting the climate impacts of plants, mulches, and soils used in landscape design and construction. In order to optimise the potential of ecosystem services in the mitigation of greenhouse gas emissions in the built environment, we unequivocally propose their inclusion when assessing sustainability. Methods We analysed the life cycle phases of plants, soils, and mulches from the viewpoint of compiling standard-based Environmental Product Declarations. In comparison to other construction products, the differences of both mass and carbon flows were identified in these products. Results Living and organic products of green infrastructure require an LCA approach of their own. Most importantly, if conventional life cycle guidance for Environmental Product Declarations were to be followed, over time, the asymmetric mass and carbon flows would lead to skewed conclusions. Moreover, the ability of plants to reproduce raises additional questions for allocating environmental impacts. Conclusions We present a set of recommendations that are required for compiling Environmental Product Declarations for the studied products of green infrastructure. In order to enable the quantification of the climate change mitigation potential of these products, it is essential that work for further development of LCA guidance be mandated.
  • Kosunen, Maiju; Kantola, Tuula; Starr, Mike; Blomqvist, Minna; Talvitie, Mervi; Lyytikäinen-Saarenmaa, Päivi (2017)
    Insect herbivore disturbances are likely to intensify as a consequence of climate change. In Finland, outbreaks of the common pine sawfly (Diprion pini L.), which feeds on Scots pine (Pinus sylvestris L.) needles, and resulting damage to forests have already increased. Although drivers of sawfly outbreak dynamics have been investigated, the effects of topography and soil fertility have not been fully elucidated. We studied the effect of elevation, slope and soil properties (carbon and nitrogen contents, C/N ratio, pH, texture and horizon thicknesses) on the defoliation intensity of 28 plots (227-531 m(2)), located in a 34.5 km(2) forested area in eastern Finland suffering from an extended outbreak of D. pini. Plot elevation and slope (relative relief 35 m, maximum elevation 200 m a. s.l.) were derived from a digital elevation model and the soil properties from samples of the humus layer (Of + Oh), (Ah+) E and B horizons of podzol profiles. Defoliation was greater on the more fertile and flatter sites than on less fertile and steeper sites, but independent of elevation. The soil property most strongly correlated to plot mean defoliation was the C/N ratio of the humus layer (Spearman's rho = -0.68). However, logistic modelling showed that the thickness of the (Ah+) E-horizon had the highest classification accuracy in predicting the probability of a plot having moderate to severe (> 20%) defoliation. Our study showed that forest damage caused by D. pini was related to topography and soil fertility. Taking these factors into account could help in understanding the population dynamics of D. pini, in modeling of insect outbreaks and in forest management planning.
  • Bhattacharya, P.; Mukherjee, A.; Jacks, G.; Nordqvist, S. (Elsevier Science B.V., 2002)
    The aim of this investigation was to determine the occurrence of As, Cu, Cr and Zn in the soil at an abandoned wood preservation unit and to examine some possible extractants for the contaminants in the soil.The mean As content of the contaminated surface soils (0–10 cm) was 186 mg kgy1, where as the mean concentrations of Cu, Cr and Zn in soils from the contaminated area were 26, 29 and 91 mg kgy1, respectively.The elevated As content in the mineral soils is related to adsorption of inorganic As phases in the fine grained fractions, which are characterised by large surface area and high positive surface charge under the current acidic conditions.Cu and Cr were found to be rather mobile, which is reflected in their lower abundance in soils and significant accumulation in sediments in the drainage leaving the area.The fine fraction of the soil (-0.125 mm) has an average metal content increased by nearly 34% as compared to the -2-mm fraction conventionally used for the analysis and assessment of soil contamination.The -2-mm fraction constitutes approximately 65% of the total weight while the fine fraction (- 0.125 mm) constitutes approximately 10%.These facts, taken together, are essential for the choice of remediation measures.Oxalate solutions have been tested as extractants for soil remediation. Dark acid oxalate extraction dissolves the amorphous Al- and Fe-oxides and hydroxides and mobilises the adsorbed inorganic As species.Oxalate also acts as a ligand for the cationic heavy metals, releasing them from exchangeable sites.With a three-step sequential leaching, up to 98–99% of the metals could be removed.At lower concentrations and higher pH, the leaching decreased to approximately 70%.
  • Titus, Brian K.; Brown, Kevin; Helmisaari, Heljä-Sisko; Vanguelova, Elena; Stupak, Inge; Evans, Alexander; Clarke, Nicholas; Guidi, Claudia; Bruckman, Viktor J.; Varnagiryte-Kabasinskiene, Iveta; Armolaitis, Kęstutis; de Vries, Wim; Hirai, Keizo; Kaarakka, Lilli; Hogg, Karen; Reece, Pam (2021)
    Forest biomass harvesting guidelines help ensure the ecological sustainability of forest residue harvesting for bioenergy and bioproducts, and hence contribute to social license for a growing bioeconomy. Guidelines, typically voluntary, provide a means to achieve outcomes often required by legislation, and must address needs related to local or regional context, jurisdictional compatibility with regulations, issues of temporal and spatial scale, and incorporation of appropriate scientific information. Given this complexity, comprehensive reviews of existing guidelines can aid in development of new guidelines or revision of existing ones. We reviewed 32 guidelines covering 43 jurisdictions in the USA, Canada, Europe and East Asia to expand upon information evaluated and recommendations provided in previous guideline reviews, and compiled a searchable spreadsheet of direct quotations from documents as a foundation for our review. Guidelines were considered in the context of sustainable forest management (SFM), focusing on guideline scope and objectives, environmental sustainability concerns (soils, site productivity, biodiversity, water and carbon) and social concerns (visual aesthetics, recreation, and preservation of cultural, historical and archaeological sites). We discuss the role of guidelines within the context of other governance mechanisms such as SFM policies, trade regulations and non-state market-driven (NSMD) standards, including certification systems. The review provides a comprehensive resource for those developing guidelines, or defining sustainability standards for market access or compliance with public regulations, and/or concerned about the sustainability of forest biomass harvesting. We recommend that those developing or updating guidelines consider (i) the importance of well-defined and understood terminology, consistent where possible with guidelines in other jurisdictions or regions; (ii) guidance based on locally relevant research, and periodically updated to incorporate current knowledge and operational experience; (iii) use of indicators of sensitive soils, sites, and stands which are relevant to ecological processes and can be applied operationally; and (iv) incorporation of climate impacts, long-term soil carbon storage, and general carbon balance considerations when defining sustainable forest biomass availability. Successful implementation of guidelines depends both on the relevance of the information and on the process used to develop and communicate it; hence, appropriate stakeholders should be involved early in guideline development.
  • Flandroy, Lucette; Poutahidis, Theofilos; Berg, Gabriele; Clarke, Gerard; Dao, Maria-Carlota; Decaestecker, Ellen; Furman, Eeva; Haahtela, Tari; Massart, Sebastien; Plovier, Hubert; Sanz, Yolanda; Rook, Graham (2018)
    Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making. (C) 2018 The Authors. Published by Elsevier B.V.