Browsing by Subject "Somatosensory cortex"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Tarkka, Ina M.; Savic, Andrej; Pekkola, Elina; Rottensteiner, Mirva; Leskinen, Tuija; Kaprio, Jaakko; Kujala, Urho M. (2016)
    Leisure-time physical activity is a key contributor to physical and mental health. Yet the role of physical activity in modulating cortical function is poorly known. We investigated whether precognitive sensory brain functions are associated with the level of physical activity. Physical activity history (3-yr-LTMET), physiological measures and somatosensory mismatch response (sMMR) in EEG were recorded in 32 young healthy twins. In all participants, 3-yr-LTMET correlated negatively with body fat%, r=0.77 and positively with VO2max, r=0.82. The fat% and VO2max differed between 15 physically active and 17 inactive participants. Trend toward larger sMMR was seen in inactive compared to active participants. This finding was significant in a pairwise comparison of 9 monozygotic twin pairs discordant for physical activity. Larger sMMR reflecting stronger synchronous neural activity may reveal diminished gating of precognitive somatosensory information in physically inactive healthy young men compared to the active ones possibly rendering them more vulnerable to somatosensory distractions from their surroundings. (C) 2016 Elsevier B.V. All rights reserved.
  • Lipachev, Nikita; Arnst, Nikita; Melnikova, Anastasiia; Jäälinoja, Harri; Kochneva, Anastasiya; Zhigalov, Alexander; Kulesskaya, Natalia; Aganov, Albert V.; Mavlikeev, Mikhail; Rauvala, Heikki; Kiyasov, Andrey P.; Paveliev, Mikhail (2019)
    Perineuronal net (PNN) is a highly structured portion of the CNS extracellular matrix (ECM) regulating synaptic plasticity and a range of pathologic conditions including posttraumatic regeneration and epilepsy. Here we studied Wisteria floribunda agglutinin-stained histological sections to quantify the PNN size and enrichment of chondroitin sulfates in mouse brain and spinal cord. Somatosensory cortex sections were examined during the period of PNN establishment at postnatal days 14, 21 and 28. The single cell PNN size and the chondroitin sulfate intensity were quantified for all cortex layers and specifically for the cortical layer IV which has the highest density of PNN-positive neurons. We demonstrate that the chondroitin sulfate proteoglycan staining intensity is increased between P14 and P28 while the PNN size remains unchanged. We then addressed posttraumatic changes of the PNN expression in laminae 6 and 7 of cervical spinal cord following hemisection injury. We demonstrate increase of the chondroitin sulfate content at 1.6–1.8 mm rostrally from the injury site and increase of the density of PNN-bearing cells at 0.4–1.2 mm caudally from the injury site. We further demonstrate decrease of the single cell PNN area at 0.2 mm caudally from the injury site suggesting that the PNN ECM takes part in the posttraumatic tissue rearrangement in the spinal cord. Our results demonstrate new insights on the PNN structure dynamics in the developing and posttraumatic CNS.
  • Hautasaari, Pekka; Savic, Andrej M.; Loberg, Otto; Niskanen, Eini; Kaprio, Jaakko; Kujala, Urho M.; Tarkka, Ina M. (2017)
    Associations between long-term physical activity and cortical function and brain structure are poorly known. Our aim was to assess whether brain functional and/or structural modulation associated with long-term physical activity is detectable using a discordant monozygotic male twin pair design. Nine monozygotic male twin pairs were carefully selected for an intrapair difference in their leisure-time physical activity of at least three years duration (mean age 34 +/- 1 years). We registered somatosensory mismatch response (SMMR) in EEG to electrical stimulation of fingers and whole brain MR images. We obtained exercise history and measured physical fitness and body composition. Equivalent electrical dipole sources of SMMR as well as gray matter (GM) voxel counts in regions of interest indicated by source analysis were evaluated. SMMR dipolar source strengths differed between active and inactive twins within twin pairs in postcentral gyrus, medial frontal gyrus and superior temporal gyrus and in anterior cingulate (AC) GM voxel counts differed similarly. Compared to active twins, their inactive twin brothers showed greater dipole strengths in short periods of the deviant-elicited SMMR and larger AC GM voxel counts. Stronger activation in early unattended cortical processing of the deviant sensory signals in inactive co-twins may imply less effective gating of somatosensory information in inactive twins compared to their active brothers. Present findings indicate that already in 30's long-term physical activity pattern is linked with specific brain indices, both in functional and structural domains.