Browsing by Subject "Sovellettu matematiikka"

Sort by: Order: Results:

Now showing items 1-19 of 19
  • Susiluoto, Jouni (Helsingin yliopisto, 2019)
    Climate change is one of the most important, pressing, and furthest reaching global challenges that humanity faces in the 21st century. Already affecting daily lives of many directly and everyone indirectly, changes in climate are projected to have many catastrophic consequences. For this reason, researching climate and climate change is needed. Studying complex geoscientific phenomena such as climate change consists of a patchwork of challenging mathematical, statistical, and computational problems. To solve these problems, local and global process models and statistical models are combined with both small in situ observation data sets with only few observations, and equally well with enormous global remote sensing data products containing hundreds of millions of data points. This integration of models and data can be done in a Bayesian inverse modeling setting if the algorithms and computational methods used are chosen and implemented carefully. The methods used in the four publications on which this thesis is based range from high-dimensional Bayesian spatial statistical models and Markov chain Monte Carlo methods to time series modeling and point estimation via optimization. The particular geoscientific problems considered are: finding the spatio-temporal distribution of atmospheric carbon dioxide based on sparse remote sensing data, quantifying uncertainties in modeling methane emissions from boreal wetlands, analyzing and quantifying the effect of climate change on growing season in the boreal region, and using statistical methods to calibrate a terrestrial ecosystem model. In addition to analyzing these problems, the research and the results help to understand model performance and how modeling uncertainties in very large computational problems can be approached, also providing algorithm implementations on top of which future efforts may be built.
  • Suominen, Henri (Helsingin yliopisto, 2021)
    Online hypothesis testing occurs in many branches of science. Most notably it is of use when there are too many hypotheses to test with traditional multiple hypothesis testing or when the hypotheses are created one-by-one. When testing multiple hypotheses one-by-one, the order in which the hypotheses are tested often has great influence to the power of the procedure. In this thesis we investigate the applicability of reinforcement learning tools to solve the exploration – exploitation problem that often arises in online hypothesis testing. We show that a common reinforcement learning tool, Thompson sampling, can be used to gain a modest amount of power using a method for online hypothesis testing called alpha-investing. Finally we examine the size of this effect using both synthetic data and a practical case involving simulated data studying urban pollution. We found that, by choosing the order of tested hypothesis with Thompson sampling, the power of alpha investing is improved. The level of improvement depends on the assumptions that the experimenter is willing to make and their validity. In a practical situation the presented procedure rejected up to 6.8 percentage points more hypotheses than testing the hypotheses in a random order.
  • Pyrylä, Atte (Helsingin yliopisto, 2020)
    In this thesis we will look at the asymptotic approach to modeling randomly weighted heavy-tailed random variables and their sums. The heavy-tailed distributions, named after the defining property of having more probability mass in the tail than any exponential distribution and thereby being heavy, are essentially a way to have a large tail risk present in a model in a realistic manner. The weighted sums of random variables are a versatile basic structure that can be adapted to model anything from claims over time to the returns of a portfolio, while giving the primary random variables heavy-tails is a great way to integrate extremal events into the models. The methodology introduced in this thesis offers an alternative to some of the prevailing and traditional approaches in risk modeling. Our main result that we will cover in detail, originates from "Randomly weighted sums of subexponential random variables" by Tang and Yuan (2014), it draws an asymptotic connection between the tails of randomly weighted heavy-tailed random variables and the tails of their sums, explicitly stating how the various tail probabilities relate to each other, in effect extending the idea that for the sums of heavy-tailed random variables large total claims originate from a single source instead of being accumulated from a bunch of smaller claims. A great merit of these results is how the random weights are allowed for the most part lack an upper bound, as well as, be arbitrarily dependent on each other. As for the applications we will first look at an explicit estimation method for computing extreme quantiles of a loss distributions yielding values for a common risk measure known as Value-at-Risk. The methodology used is something that can easily be adapted to a setting with similar preexisting knowledge, thereby demonstrating a straightforward way of applying the results. We then move on to examine the ruin problem of an insurance company, developing a setting and some conditions that can be imposed on the structures to permit an application of our main results to yield an asymptotic estimate for the ruin probability. Additionally, to be more realistic, we introduce the approach of crude asymptotics that requires little less to be known of the primary random variables, we formulate a result similar in fashion to our main result, and proceed to prove it.
  • Rautio, Siiri (Helsingin yliopisto, 2019)
    Improving the quality of medical computed tomography reconstructions is an important research topic nowadays, when low-dose imaging is pursued to minimize the X-ray radiation afflicted on patents. Using lower radiation doses for imaging leads to noisier reconstructions, which then require postprocessing, such as denoising, in order to make the data up to par for diagnostic purposes. Reconstructing the data using iterative algorithms produces higher quality results, but they are computationally costly and not quite powerful enough to be used as such for medical analysis. Recent advances in deep learning have demonstrated the great potential of using convolutional neural networks in various image processing tasks. Performing image denoising with deep neural networks can produce high-quality and virtually noise-free predictions out of images originally corrupted with noise, in a computationally efficient manner. In this thesis, we survey the topics of computed tomography and deep learning for the purpose of applying a state-of-the-art convolutional neural network for denoising dental cone-beam computed tomography reconstruction images. We investigate how the denoising results of a deep neural network are affected if iteratively reconstructed images are used in training the network, as opposed to using traditionally reconstructed images. The results show that if the training data is reconstructed using iterative methods, it notably improves the denoising results of the network. Also, we believe these results can be further improved and extended beyond the case of cone-beam computed tomography and the field of medical imaging.
  • Virri, Maria (Helsingin yliopisto, 2021)
    Bonus-malus systems are used globally to determine insurance premiums of motor liability policy-holders by observing past accident behavior. In these systems, policy-holders move between classes that represent different premiums. The number of accidents is used as an indicator of driving skills or risk. The aim of bonus-malus systems is to assign premiums that correspond to risks by increasing premiums of policy-holders that have reported accidents and awarding discounts to those who have not. Many types of bonus-malus systems are used and there is no consensus about what the optimal system looks like. Different tools can be utilized to measure the optimality, which is defined differently according to each tool. The purpose of this thesis is to examine one of these tools, elasticity. Elasticity aims to evaluate how well a given bonus-malus system achieves its goal of assigning premiums fairly according to the policy-holders’ risks by measuring the response of the premiums to changes in the number of accidents. Bonus-malus systems can be mathematically modeled using stochastic processes called Markov chains, and accident behavior can be modeled using Poisson distributions. These two concepts of probability theory and their properties are introduced and applied to bonus-malus systems in the beginning of this thesis. Two types of elasticities are then discussed. Asymptotic elasticity is defined using Markov chain properties, while transient elasticity is based on a concept called the discounted expectation of payments. It is shown how elasticity can be interpreted as a measure of optimality. We will observe that it is typically impossible to have an optimal bonus-malus system for all policy-holders when optimality is measured using elasticity. Some policy-holders will inevitably subsidize other policy-holders by paying premiums that are unfairly large. More specifically, it will be shown that, for bonus-malus systems with certain elasticity values, lower-risk policy-holders will subsidize the higher-risk ones. Lastly, a method is devised to calculate the elasticity of a given bonus-malus system using programming language R. This method is then used to find the elasticities of five Finnish bonus-malus systems in order to evaluate and compare them.
  • Sohkanen, Pekka (Helsingin yliopisto, 2021)
    The fields of insurance and financial mathematics require increasingly intricate descriptors of dependency. In the realm of financial mathematics, this demand arises from globalisation effects over the past decade, which have caused financial asset returns to exhibit increasingly intricate dependencies between each other. Of particular interest are measurements describing the probabilities of simultaneous occurrences between unusually negative stock returns. In insurance mathematics, the ability to evaluate probabilities associated with the simultaneous occurrence of unusually large claim amounts can be crucial for both the solvency and the competitiveness of an insurance company. These sorts of dependencies are referred to by the term tail dependence. In this thesis, we introduce the concept of tail dependence and the tail dependence coefficient, a tool for determining the amount of tail dependence between random variables. We also present statistical estimators for the tail dependence coefficient. Favourable properties of these estimators are investigated and a simulation study is executed in order to evaluate and compare estimator performance under a variety of distributions. Some necessary stochastics concepts are presented. Mathematical models of dependence are introduced. Elementary notions of extreme value theory and empirical processes are touched on. These motivate the presented estimators and facilitate the proofs of their favourable properties.
  • Hanninen, Elsa (Helsingin yliopisto, 2020)
    Vakuutussopimusten tappion arvioiminen on tärkeää vakuutusyhtiön riskienhallinnan kannalta. Tässä työssä esitellään Hattendorffin lause vakuutussopimuksen tappion odotusarvon ja varianssin arvioimiseksi sekä sovelletaan sen tuloksia monitilaisella Markov-prosessilla mallinnettavalle henkivakuutussopimukselle. Hattendorffin lauseen nojalla ekvivalenssiperiaatteen mukaan hinnoitellun vakuutussopimuksen erillisillä aikaväleillä syntyneiden tappioiden odotusarvo on nolla, ja tappiot ovat korreloimattomia, jonka seurauksena tappion varianssi voidaan laskea erillisillä aikaväleillä muodostuneiden tappioiden varianssien summana. Työn soveltavana osana simuloidaan Markov-prosesseja sopivassa monitilaisessa mallissa mallintamaan henkivakuutussopimuksien realisaatioita. Tutkitaan, onko simuloitujen polkujen tuottamien vuosittaisten tappioiden keskiarvo lähellä nollaa, ja onko koko sopimusajan tappioiden varianssin arvo lähellä summaa vuosittaisten tappioiden variansseista. Lisäksi lasketaan simulaation asetelmalle Hattendorffin lauseen avulla teoreettiset vastineet ja verrataan näitä simuloituihin arvoihin. Vakuutussopimus pitää karkeasti sisällään kahdenlaisia maksuja: vakuutusyhtiön maksamat korvausmaksut ja vakuutetun maksamat vakuutusmaksut. Vakuutussopimuksen kassavirta on jollain aikavälillä tapahtuvien vakuutuskorvausten ja -maksujen erotuksen hetkeen nolla diskontattu arvo. Vastuuvelka on määrittelyhetken jälkeen syntyvän, määrittelyhetkeen diskontatun, kassavirran odotusarvo. Vakuutussopimuksen tappio jollain aikavälillä määritellään kyseisen aikavälin kassavirran ja vastuuvelan arvonmuutoksen summana. Kun määritellään stokastinen prosessi, joka laskee tietyllä hetkellä siihen mennessä kumuloituneet kustannukset sekä tulevan vastuuvelan nykyarvon, voidaan tappio ilmaista tämän prosessin arvonmuutoksena. Kyseinen prosessi on neliöintegroituva martingaali, jolloin Hattendorffin lauseen tulokset ovat seurausta neliöintegroituvien martingaalien arvonmuutoksen ominaisuuksista. Hattendorffin lauseen tulokset löydettiin jo 1860-luvulla, mutta martingaaliteorian hyödyntäminen on moderni lähestymistapa ongelmaan. Esittämällä monitilaisella Markov-prosessilla mallinnettavan sopimuksen kustannukset Lebesgue-Stieltjes integraalina, saadaan tappion varianssille laskukelpoiset muodot. Markov-prosessilla mallinnettavilla sopimuksille voidaan johtaa erityistapaus Hattendorffin tuloksesta, missä tappiot voidaan allokoida eri vuosien lisäksi eri tiloihin liittyviksi tappioiksi. Soveltavassa osiossa nähdään, että yksittäisinä sopimusvuosina syntyneiden tappioiden odotusarvot ovat lähellä nollaa, ja otosvarianssien summa lähestyy koko sopimusajan tappion otosvarianssia, mikä on yhtäpitävää Hattendorffin lauseen väitteiden kanssa. Simuloidut otosvarianssit eivät täysin vastaa teoreettisia vastineitaan.
  • Holopainen, Jonathan (Helsingin yliopisto, 2021)
    Perinteisesti henkivakuutusten hinnoittelutekijöihin lisätään turvamarginaali. Diskonttauskorko on markkinakorkoa matalampi ja kuolevuuteen on lisätty turvamarginaali. Kuolemanvaraturvassa hinnoittelukuolevuus on korkeampi ja annuiteettivakuutuksessa(eläkevakuutus) matalampi kuin havaittu kuolevuus. Koska henkivakuutukset ovat usein pitkäkestoisia, on turvaavuudella hyvin tärkeä rooli tuotteen kannattavuuden ja henkivakuutusyhtiön vakavaraisuuden kannalta. Monesti myös laki määrää henkivakuutusyhtiöt hinnoittelemaan tuotteensa turvaavasti jotta yhtiöt voivat huonossakin tilanteessa edelleen turvata etuudet vakuutuksenottajille. Henkivakuutusyhtiöt ovat myös kehittäneet monimutkaisempia tuotteita, jossa voi olla useampia riskitekijöitä, joiden kehittymistä pitkällä aikavälillä voi olla vaikea ennustaa. Turvaavat hinnoittelutekijät tarkoittavat, että keskimäärin vakuutusyhtiöille kertyy tuottoja yli ajan. Tässä työssä tutkitaan vakuutusyhtiöön kertyvän tuoton tai tappion satunnaisuuden ominaisuuksia. Jätämme tämän työn ulkopuolelle vakuutusyhtiön sijoitustuoton, liikekulut sekä vakuutusyhtiöiden tavat jakaa ylijäämää vakuutetuille bonuksina. Työssä seurataan Henrik Ramlau-Hansenin artikkelia 'The emergence of profit in life insurance' keskittyen kuitenkin yleiseen tuoton odotusarvoon, odotusarvoon liittyen tiettyyn tilaan sekä määritetyn ajan sisällä kertyneeseen tuoton odotusarvoon. Tuloksia pyritään myös avaamaan niin, että ne olisi helpompi ymmärtää. Henkivakuutusyhtiön tuotto määritellään matemaattisesti käyttäen Markov prosesseja. Määritelmää käyttäen lasketaan tietyn aikavälin kumulatiivisen tuoton odotusarvo ja hajonta. Tulokseksi saadaan, että tuoton odotusarvo on Markov prosessin eri tilojen tuottaman ensimmäisen kertaluvun prospektiivisen vastuuvelan ja toisen kertaluvun retrospektiivisen vastuuvelan erotuksien summa kerrottuna todennäköisyyksillä, joilla ollaan kyseisessä tilassa aikavälin lopussa. Lopuksi työssä lasketaan vielä 10 vuoden kertamaksuisen kuolemanvaravakuutuksen odotettu tuotto käyttäen työn tuloksia. Lisäksi sama vakuutus simuloitiin myös 10 000 000 kertaa päästen hyvin lähelle kaavan antamaa lopputulosta.
  • Ersalan, Muzaffer Gür (Helsingin yliopisto, 2019)
    In this thesis, Convolutional Neural Networks (CNN) and Inverse Mathematic methods will be discussed for automated defect detection in materials that are used for radiation detectors. The first part of the thesis is dedicated to the literature review on the methods that are used. These include a general overview of Neural Networks, computer vision algorithms and Inverse Mathematics methods, such as wavelet transformations, or total variation denoising. In the Materials and Methods section, how these methods can be utilized in this problem setting will be examined. Results and Discussions part will reveal the outcomes and takeaways from the experiments. A focus of this thesis is put on the CNN architecture that fits the task best, how to optimize that chosen CNN architecture and discuss, how selected inputs created by Inverse Mathematics influence the Neural Network and it's performance. The results of this research reveal that the initially chosen Retina-Net is well suited for the task and the Inverse Mathematics methods utilized in this thesis provided useful insights.
  • Lankinen, Petra (Helsingin yliopisto, 2021)
    Vahinkovakuutusyhtiöiden on Suomen lainsäädännön nojalla kyettävä arvioimaan vakavaraisuuttaan. Jotta arvion voi tehdä, tulee yhtiöiden tunnistaa ja pyrkiä hallitsemaan liiketoiminta-alueeseensa liittyviä riskejä. Taloudelliset riskit ovat eri vakuutuslajeilla erilaisia, sillä tulokseen liittyvät todennäköisyysjakaumat voivat olla keskenään hyvin erilaisia — toisilla vakuutuslajeilla vahingot ovat tyypillisesti pieniä ja niitä tulee yhtiön korvattavaksi vuosittain paljon, kun taas joidenkin vakuutusten riskit realisoituvat harvoin, mutta myös korvaussummat voivat olla todella suuria. Tutkielman tavoitteena on tarkastella, kuinka vahinkovakuutusyhtiön vakavaraisuuslaskentaa voidaan käsitellä teoreettisessa viitekehyksessä. Tutkielmassa tarkastellaan vuosittaista kokonaistappiota, eli korvausvaateiden yhteissumman ja asiakkailta saatavan maksutulon välistä erotusta silloin, kun korvaukset ovat keskenään samoin jakautuneita ja riippumattomia. Kun yhden vuoden tappion jakauma on tiedossa, on tietyissä tapauksissa mahdollista arvioida vararikon todennäköisyyttä pitkällä aikavälillä. Tutkielmassa todistetaan Cramérin lause ja Cramér-Lundbergin approksimaatio, joiden avulla kevythäntäistä todennäköisyysjakaumaa noudattavalle satunnaismuuttujalle voidaan löytää vararikon todennäköisyyden paras mahdollinen yläraja tiettyjen oletusten vallitessa. Paksuhäntäisten jakaumien osalta tutustutaan vararikkotodennäköisyyden arviointiin simuloinnin kautta. Jotta tässä tutkielmassa esitettyjä tuloksia voidaan soveltaa, on hyödyllistä tuntea erilaisia menetelmiä tunnistaa jakauman kevyt- tai paksuhäntäisyysominaisuus havaintoaineistosta. Tätä varten tutkielmassa esitellään kolme visuaalista menetelmää jakauman tunnistamiseen sekä niiden teoreettiset perustat. Lisäksi näitä keinoja testataan aineistolla, joka on otos Pohjola Vakuutuksen korvausdataa vuodelta 2015. Menetelmien perusteella voidaan ajatella, että molemmissa aineistoissa korvaukset vaikuttavat noudattavan jotakin paksuhäntäistä jakaumaa, mutta aineistojen välillä oli merkittäviä eroja.
  • Nuutinen, Joonas (Helsingin yliopisto, 2021)
    Tässä tutkielmassa käsitellään log-optimaalisen salkun käsitettä jatkuvassa markkinamallissa. Jatkuva markkinamalli koostuu instrumenteista, joiden arvoja mallinnetaan jatkuvilla stokastisilla prosesseilla. Mahdollisia sijoitusstrategioita kuvataan salkuilla, jotka ovat instrumenttien määristä koostuvia moniulotteisia stokastisia prosesseja. Log-optimaalinen salkku määritellään siten, että se jokaisella hetkellä maksimoi salkun arvon logaritmin lyhyen aikavälin muutoksen odotusarvon. Lokaalisti optimaalinen salkku puolestaan maksimoi jokaisella hetkellä salkun arvon lyhyen aikavälin muutoksen odotusarvon valitulla varianssilla. Tutkielmassa todistetaan, että jokainen lokaalisti optimaalinen salkku voidaan esittää yhdistelmänä log-optimaalista salkkua ja pankkitalletusta vastaavaa instrumenttia. Saman osoitetaan pätevän myös log-optimaalisen salkun ja instrumenttien kokonaismääristä koostuvan markkinasalkun välillä, jos jokaisella markkinoilla toimivista sijoittajista on jokin lokaalisti optimaalinen salkku. Tutkielmassa käsitellään lisäksi minimaalista markkinamallia, joka on eräs yksinkertainen malli log-optimaaliseksi oletettavan markkinasalkun arvolle. Tähän liittyen johdetaan myös yksittäisten instrumenttien arvoja mallintava jatkuva markkinamalli, jossa instrumentteja vakiomäärät sisältävä markkinasalkku on minimaalisen markkinamallin mukainen log-optimaalinen salkku.
  • Bernardo, Alexandre (Helsingin yliopisto, 2020)
    In insurance and reinsurance, heavy-tail analysis is used to model insurance claim sizes and frequencies in order to quantify the risk to the insurance company and to set appropriate premium rates. One of the reasons for this application comes from the fact that excess claims covered by reinsurance companies are very large, and so a natural field for heavy-tail analysis. In finance, the multivariate returns process often exhibits heavy-tail marginal distributions with little or no correlation between the components of the random vector (even though it is a highly correlated process when taking the square or the absolute values of the returns). The fact that vectors which are considered independent by conventional standards may still exhibit dependence of large realizations leads to the use of techniques from classical extreme-value theory, that contains heavy-tail analysis, in estimating an extreme quantile of the profit-and-loss density called value-at-risk (VaR). The need of the industry to understand the dependence between random vectors for very large values, as exemplified above, makes the concept of multivariate regular variation a current topic of great interest. This thesis discusses multivariate regular variation, showing that, by having multiple equivalent characterizations and and by being quite easy to handle, it is an excellent tool to address the real-world issues raised previously. The thesis is structured as follows. At first, some mathematical background is covered: the notions of regular variation of a tail distribution in one dimension is introduced, as well as different concepts of convergence of probability measures, namely vague convergence and $\mathbb{M}^*$-convergence. The preference in using the latter over the former is briefly discussed. The thesis then proceeds to the main definition of this work, that of multivariate regular variation, which involves a limit measure and a scaling function. It is shown that multivariate regular variation can be expressed in polar coordinates, by replacing the limit measure with a product of a one-dimensional measure with a tail index and a spectral measure. Looking for a second source of regular variation leads to the concept of hidden regular variation, to which a new hidden limit measure is associated. Estimation of the tail index, the spectral measure and the support of the limit measure are next considered. Some examples of risk vectors are next analyzed, such as risk vectors with independent components and risk vectors with repeated components. The support estimator presented earlier is then computed in some examples with simulated data to display its efficiency. However, when the estimator is computed with real-life data (the value of stocks for different companies), it does not seem to suit the sample in an adequate way. The conclusion is drawn that, although the mathematical background for the theory is quite solid, more research needs to be done when applying it to real-life data, namely having a reliable way to check whether the data stems from a multivariate regular distribution, as well as identifying the support of the limit measure.
  • Sanders, Julia (Helsingin yliopisto, 2022)
    In this thesis, we demonstrate the use of machine learning in numerically solving both linear and non-linear parabolic partial differential equations. By using deep learning, rather than more traditional, established numerical methods (for example, Monte Carlo sampling) to calculate numeric solutions to such problems, we can tackle even very high dimensional problems, potentially overcoming the curse of dimensionality. This happens when the computational complexity of a problem grows exponentially with the number of dimensions. In Chapter 1, we describe the derivation of the computational problem needed to apply the deep learning method in the case of the linear Kolmogorov PDE. We start with an introduction to a few core concepts in Stochastic Analysis, particularly Stochastic Differential Equations, and define the Kolmogorov Backward Equation. We describe how the Feynman-Kac theorem means that the solution to the linear Kolmogorov PDE is a conditional expectation, and therefore how we can turn the numerical approximation of solving such a PDE into a minimisation. Chapter 2 discusses the key ideas behind the terminology deep learning; specifically, what a neural network is and how we can apply this to solve the minimisation problem from Chapter 1. We describe the key features of a neural network, the training process, and how parameters can be learned through a gradient descent based optimisation. We summarise the numerical method in Algorithm 1. In Chapter 3, we implement a neural network and train it to solve a 100-dimensional linear Black-Scholes PDE with underlying geometric Brownian motion, and similarly with correlated Brownian motion. We also illustrate an example with a non-linear auxiliary Itô process: the Stochastic Lorenz Equation. We additionally compute a solution to the geometric Brownian motion problem in 1 dimensions, and compare the accuracy of the solution found by the neural network and that found by two other numerical methods: Monte Carlo sampling and finite differences, as well as the solution found using the implicit formula for the solution. For 2-dimensions, the solution of the geometric Brownian motion problem is compared against a solution obtained by Monte Carlo sampling, which shows that the neural network approximation falls within the 99\% confidence interval of the Monte Carlo estimate. We also investigate the impact of the frequency of re-sampling training data and the batch size on the rate of convergence of the neural network. Chapter 4 describes the derivation of the equivalent minimisation problem for solving a Kolmogorov PDE with non-linear coefficients, where we discretise the PDE in time, and derive an approximate Feynman-Kac representation on each time step. Chapter 5 demonstrates the method on an example of a non-linear Black-Scholes PDE and a Hamilton-Jacobi-Bellman equation. The numerical examples are based on the code by Beck et al. in their papers "Solving the Kolmogorov PDE by means of deep learning" and "Deep splitting method for parabolic PDEs", and are written in the Julia programming language, with use of the Flux library for Machine Learning in Julia. The code used to implement the method can be found at
  • Laarne, Petri (Helsingin yliopisto, 2021)
    The nonlinear Schrödinger equation is a partial differential equation with applications in optics and plasma physics. It models the propagation of waves in presence of dispersion. In this thesis, we will present the solution theory of the equation on a circle, following Jean Bourgain’s work in the 1990s. The same techniques can be applied in higher dimensions and with other similar equations. The NLS equation can be solved in the general framework of evolution equations using a fixed-point method. This method yields well-posedness and growth bounds both in the usual L^2 space and certain fractional-order Sobolev spaces. The difficult part is achieving good enough bounds on the nonlinear term. These so-called Strichartz estimates involve precise Fourier analysis in the form of dyadic decompositions and multiplier estimates. Before delving into the solution theory, we will present the required analytical tools, chiefly related to the Fourier transform. This chapter also describes the complete solution theory of the linear equation and illustrates differences between unbounded and periodic domains. Additionally, we develop an invariant measure for the equation. Invariant measures are relevant in statistical physics as they lead to useful averaging properties. We prove that the Gibbs measure related to the equation is invariant. This measure is based on a Gaussian measure on the relevant function space, the construction and properties of which we briefly explain.
  • Nurmela, Janne (Helsingin yliopisto, 2022)
    The quantification of carbon dioxide emissions pose a significant and multi-faceted problem for the atmospheric sciences as a part of the research regarding global warming and greenhouse gases. Emissions originating from point sources, referred to as plumes, can be simulated using mathematical and physical models, such as a convection-diffusion plume model and a Gaussian plume model. The convection-diffusion model is based on the convection-diffusion partial differential equation describing mass transfer in diffusion and convection fields. The Gaussian model is a special case or a solution for the general convection-diffusion equation when assumptions of homogeneous wind field, relatively small diffusion and time independence are made. Both of these models are used for simulating the plumes in order to find out the emission rate for the plume source. An equation for solving the emission rate can be formulated as an inverse problem written as y=F(x)+ε where y is the observed data, F is the plume model, ε is the noise term and x is an unknown vector of parameters, including the emission rate, which needs to be solved. For an ill-posed inverse problem, where F is not well behaved, the solution does not exist, but a minimum norm solution can be found. That is, the solution is a vector x which minimizes a chosen norm function, referred to as a loss function. This thesis focuses on the convection-diffusion and Gaussian plume models, and studies both the difference and the sensibility of these models. Additionally, this thesis investigates three different approaches for optimizing loss functions: the optimal estimation for linear model, Levenberg–Marquardt algorithm for non-linear model and adaptive Metropolis algorithm. A goodness of different fits can be quantified by comparing values of the root mean square errors; the better fit the smaller value the root mean square error has. A plume inversion program has been implemented in Python programming language using the version 3.9.11 to test the implemented models and different algorithms. Assessing the parameters' effect on the estimated emission rate is done by performing sensitivity tests for simulated data. The plume inversion program is also applied for the satellite data and the validity of the results is considered. Finally, other more advanced plume models and improvements for the implementation will be discussed.
  • Puumalainen, Aura (Helsingin yliopisto, 2022)
    Tässä tutkielmassa esitetään suojausmenetelmä monitilaisille sijoitussidonnaisille henkivakuutuksille. Sijoitussidonnaisissa henkivakuutussopimuksissa vakuutusyhtiön vakuutetulle maksamat korvaukset riippuvat sekä vakuutetun tilasta että arvopaperimarkkinoista. Arvopaperimarkkinat ovat jatkuva-aikaiset ja koostuvat yhdestä riskittömästä ja yhdestä riskillisestä arvopaperista, joita vakuutusyhtiöllä on portfoliossaan. Esiteltävässä suojausmenetelmässä tulevien kustannusten neliön ehdollinen odotusarvo minimoidaan portfolion suhteen kaikkina tarkasteltavina ajanhetkinä. Näin määritettyä yksikäsitteistä portfolioprosessia kutsutaan riskin minimoivaksi suojausstrategiaksi. Ensimmäisessä luvussa käydään läpi myöhempien lukujen kannalta välttämättömiä esitietoja. Todennäköisyysteoria oletetaan pääosin tunnetuksi, ja stokastisen analyysin asioiden kohdalla useimmat todistukset sivuutetaan. Tuloksista keskeisimpänä mainittakoon Galtchouk-Kunita-Watanabe-hajotelma, jonka todistus esitetään aputuloksiin vedoten. GKW-hajotelman mukaan neliöintegroituva martingaali voidaan esittää yksikäsitteisesti kolmen tietyt ehdot toteuttavan martingaalin summana. Toisessa luvussa esitellään lyhyesti tunnettu Black-Scholes-markkinamalli. Lisäksi määritellään maksuprosessi, jolla kuvataan henkivakuutussopimuksen generoimia maksuja vakuutusyhtiön näkökulmasta. Tämän jälkeen tutustutaan maksujen ehdollisen odotusarvoprosessin käsitteeseen ja määritetään yksikäsitteinen riskin minimoiva suojausstrategia sekä sitä vastaava riskiprosessi yleiselle maksuprosessille. Ratkaiseviksi tekijöiksi osoittautuvat maksujen ehdollisen odotusarvoprosessin GKW-hajotelmassa esiintyvä ennustettava prosessi ja riskittömällä arvopaperilla diskontatun riskillisen arvopaperin kanssa ortogonaalinen martingaali. Kolmas luku käsittelee monitilaisten henkivakuutusten mallintamista Markov-prosessien avulla ja niin kutsuttua yhdistettyä mallia. Yhdistetty malli koostuu sekä arvopaperimarkkinoiden että vakuutetun tilan kehitystä kuvaavan Markov-prosessin generoimista filtraatioista, jotka oletetaan riippumattomiksi. Luvun päätteeksi johdetaan esitys monitilaisen sijoitussidonnaisen henkivakuutussopimuksen maksuprosessille. Neljännessä luvussa määritetään riskin minimoiva suojausstrategia ja riskiprosessi edellä johdetulle maksuprosessille. Ensin todistetaan kuitenkin kyseistä maksuprosessia vastaavan maksujen ehdollisen odotusarvoprosessin GKW-hajotelma, jonka avulla suojausstrategia riskiprosesseineen löydetään. Lopussa suojausstrategiaa sovelletaan yksinkertaisten kaksi- ja kolmitilaisten Markov-prosesseilla mallinnettavien sijoitussidonnaisten henkivakuutussopimusten maksuprosesseihin.
  • Pyyhkälä, Lauri (Helsingin yliopisto, 2020)
    Työssä tutkitaan Hyvinkään sairaanhoitoalueen kustannuksia, sekä kokonaiskustannusten tasolla, että yksittäisen potilaan tasolla. Sairaanhoidon kustannukset ovat olennainen osa yhteiskunnan toimintaa ja ne vaikuttavat merkittävästi kuntien ja kaupunkien talouteen. Tämän takia on hyödyllistä pystyä ymmärtämään ja mallintamaan näitä kustannuksia. Aineistona on käytetty HUSilta saatua dataa kustannuslajeista, potilaista ja diagnoosiryhmistä. Tutkimuksen ensimmäinen tavoite on löytää tilastollinen malli, jolla voidaan ennustaa kokonaiskustannuksia. Toisena tavoitteena on löytää yksittäisten potilaiden kustannuksiin sopiva jakauma. Työn alussa esitellään todennäköisyysteoriaa ja tilastollisia menetelmiä, joita hyödynnetään tutkimuksessa. Näistä tärkeimmät ovat keskineliövirhe, aikasarjamalli ja tilastolliset testit. Näiden teorioiden avulla luodaan mallit kokonaiskustannuksille ja yksittäisen potilaan kustannuksille. Kokonaiskustannusten analysointi aloitetaan erottelemalla suurimmat kustannuslajit, jotta niiden tutkiminen olisi selkeämpää. Näihin isoimpiin kustannuslajeihin valitaan tärkeimmät selittävät muuttujat käyttämällä lineaarista regressiomallia ja informaatiokriteeriä. Näin saatujen muuttujien avulla voidaan muodostaa moniulotteinen aikasarjamalli kokonaiskustannuksille ja tärkeimmille muuttujille. Tämän mallin avulla voidaan luoda ennuste tulevaisuuden kustannuksista, kun se on validoitu muun aineiston avulla. Tutkielman viimeisessä osiossa tutustutaan tarkemmin paksuhäntäisiin jakaumiin, ja esitellään niiden tärkeimpiä ominaisuuksia. Paksuhäntäisillä jakaumilla suurien havaintojen todennäköisyys on merkittävästi suurempi kuin kevythäntäisillä. Tämä vuoksi niiden tunnistaminen on tärkeää, sillä paksuhäntäiset jakaumat voivat aiheuttaa merkittäviä kustannuksia. Termien esittelyn jälkeen tehdään visuaalista tarkastelua potilaiden kustannuksista. Tavoitteena on selvittää, mikä jakauma kuvaisi parhaiten potilaiden kustannuksia. Tutkimuksessa verrataan erilaisten teoreettisten jakaumien kuvaajia aineistosta laskettuun empiiriseen jakaumaan. Erilaisista kuvaajista voidaan päätellä, että kustannusten jakauma on paksuhäntäinen. Lisäksi huomataan, että havainnot sopisivat yhteen sen oletuksen kanssa, että jakauman häntä muistuttaa ainakin asymptoottisesti potenssihäntää. Työn lopussa perustellaan ääriarvoteoriaan nojaten, miksi potenssihännät ovat luonnollinen malli suurimmille kustannuksille.
  • Heikkilä, Tommi (Helsingin yliopisto, 2019)
    Computed tomography (CT) is an X-ray based imaging modality utilized not only in medicine but also in other scientific fields and industrial applications. The imaging process can be mathematically modelled as a linear equation and finding its solution is a typical example of an inverse problem. It is ill-posed especially if the number of projections is sparse. One approach is to combine the data mismatch term with a regularization one, and look for the minimizer of such a functional. The regularization is a penalty term that introduces prior information that might be available on the solution. Numerous algorithms exist to solve a problem of this type. For example the iterative primaldual fixed point algorithm (PDFP) is well suited for reconstructing CT images when the functional to minimize includes a non-negativity constraint and the prior information is expressed by an l1-norm of the shearlet transformed target. The motivation of this thesis stems from CT imaging of plants perfused with a liquid contrast agent aimed at increasing the contrast of the images and studying the ow of liquid in the plant over time. Therefore the task is to reconstruct dynamic CT images. The main idea is to apply 3D shearlets as a prior, treating time as the third dimension. For comparison, both Haar wavelet transform as well as 2D shearlet transform were tested. In addition a recently proposed technique based on the sparsity levels of the target was used to ease the non-trivial choice of the regularization parameter. The quality of di erent set-ups were assessed for said problem with simulated measurements, a real life scenario where the contrast agent is applied to a gel and, finally, to real data where the contrast agent is perfused to a real plant. The results indicate that the 3D shearlet-based approach produce suitable reconstructions for observing the changes in the contrast agent even though there are no drastic improvements to the quality of reconstructions compared to using the Haar transform.
  • Kovanen, Ville (Helsingin yliopisto, 2021)
    Maxwell’s equations are a set of equations which describe how electromagnetic fields behave in a medium or in a vacuum. This means that they can be studied from the perspective of partial differential equations as different kinds of initial value problems and boundary value problems. Because often in physically relevant situations the media are not regular or there can be irregular sources such as point sources, it’s not always meaningful to study Maxwell’s equations with the intention of finding a direct solution to the problem. Instead in these cases it’s useful to study them from the perspective of weak solutions, making the problem easier to study. This thesis studies Maxwell’s equations from the perspective of weak solutions. To help understand later chapters, the thesis first introduces theory related to Hilbert spaces, weak derivates and Sobolev spaces. Understanding curl, divergence, gradient and their properties is important for understanding the topic because the thesis utilises several different Sobolev spaces which satisfy different kinds of geometrical conditions. After going through the background theory, the thesis introduces Maxwell’s equations in section 2.3. Maxwell’s equations are described in both differential form and timeharmonic differential forms as both are used in the thesis. Static problems related to Maxwell’s equations are studied in Chapter 3. In static problems the charge and current densities are stationary in time. If the electric field and magnetic field are assumed to have finite energy, it follows that the studied problem has a unique solution. The thesis demonstrates conditions on what kind of form the electric and magnetic fields must have to satisfy the conditions of the problem. In particular it’s noted that the electromagnetic field decomposes into two parts, out of which only one arises from the electric and magnetic potential. Maxwell’s equations are also studied with the methods from spectral theory in Chapter 4. First the thesis introduces and defines a few concepts from spectral theory such as spectrums, resolvent sets and eigenvalues. After this, the thesis studies non-static problems related to Maxwell’s equations by utilising their time-harmonic forms. In time-harmonic forms the Maxwell’s equations do not depend on time but instead on frequencies, effectively simplifying the problem by eliminating the time dependency. It turns out that the natural frequencies which solve the spectral problem we study belong to the spectrum of Maxwell’s operator iA . Because the spectrum is proved to be discrete, the set of eigensolutions is also discrete. This gives the solution to the problem as the natural frequency solving the problem has a corresponding eigenvector with finite energy. However, this method does not give an efficient way of finding the explicit form of the solution.