Browsing by Subject "Supersymmetry"

Sort by: Order: Results:

Now showing items 1-20 of 25
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    A statistical combination of several searches for the electroweak production of charginos and neutralinos is presented. All searches use proton-proton collision data at A root s = 13 TeV, recorded with the CMS detector at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb(-1). In addition to the combination of previous searches, a targeted analysis requiring three or more charged leptons (electrons or muons) is presented, focusing on the challenging scenario in which the difference in mass between the two least massive neutralinos is approximately equal to the mass of the Z boson. The results are interpreted in simplified models of chargino-neutralino or neutralino pair production. For chargino-neutralino production, in the case when the lightest neutralino is massless, the combination yields an observed (expected) limit at the 95% confidence level on the chargino mass of up to 650 (570) GeV, improving upon the individual analysis limits by up to 40 GeV. If the mass difference between the two least massive neutralinos is approximately equal to the mass of the Z boson in the chargino-neutralino model, the targeted search requiring three or more leptons obtains observed and expected exclusion limits of around 225 GeV on the second neutralino mass and 125 GeV on the lightest neutralino mass, improving the observed limit by about 60 GeV in both masses compared to the previous CMS result. In the neutralino pair production model, the combined observed (expected) exclusion limit on the neutralino mass extends up to 650-750 (550-750) GeV, depending on the branching fraction assumed. This extends the observed exclusion achieved in the individual analyses by up to 200 GeV. The combined result additionally excludes some intermediate gaps in the mass coverage of the individual analyses.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.
  • Bandyopadhyay, Priyotosh; Huitu, Katri Leila Päivikki; Keceli, Asli (2015)
    We study multi-lepton signatures of the triplet like charged Higgs at the LHC in the context of Y = 0 triplet extended supersymmetric model (TESSM). In TESSM the h^±_i W^∓Z coupling appears at tree level when the triplet vacuum expectation value is nonzero, and because of the coupling the charged Higgs decay channels as well as the production channels can dramatically change at the LHC. We show that for the triplet dominated charged Higgs the main production channels are no longer through the top decay or gg and gb fusions since these are very suppressed due to the lack of triplet-SM fermion coupling. In the numerical analysis, we consider also other possible production channels some of which have additional contributions from the diagrams containing h^±_i W^∓Z vertex. We investigate the decay channels of a triplet like light charged Higgs (mh^±_1≤ 200 GeV) and show that depending on the triplet component, the charged Higgs can substantially decay to W^±Z. We further examine the 3l, 4l, 5l multi-lepton signatures of the triplet like charged Higgs by considering four different benchmark points for which we perform PYTHIA level simulation using FastJet for jet formation at the LHC with 14 TeV. We found that for favorable parameters the earliest discovery with 5σ signal significance can appear with early data of 72 fb−1 of integrated luminosity. We also present the invariant mass distribution M_{lljj} for (≥ 3l) + (pT ≥ 30 GeV) and (≥ 3l) + (≥ 2j) + (pT ≥ 30 GeV) and show that in addition to the charged Higgs mass peak, an edge that carries information about heavy intermediate neutral Higgs bosons arises at the end of the mass distribution.
  • Molander, Andreas (Helsingin yliopisto, 2020)
    The Standard Model (SM) is the best established theory describing the observed matter and its interactions through all the fundamental forces except gravity. The SM is however not complete. For example, it does not explain the large difference between the electroweak scale and the Planck scale, which is known as the hierarchy problem, nor does it explain dark matter. Therefore there is a need for more comprehensive theories beyond the SM. Supersymmetry (SUSY) extends the SM with predictions of a partner particle (sparticle) for each currently known elementary particle. A few of its benefits are that it gives an explanation to the hierarchy problem and predicts the existence of a good particle candidate for dark matter. However, there is no experimental evidence for SUSY so far. The search for SUSY particles is currently on-going at the experiments using the Large Hadron Collider (LHC) at CERN. So far, the searches have been focusing on strongly interacting supersymmetric particles, still without findings. One of the parameter ranges still to be covered, is the compressed mass scenario in the lower mass end for weakly interacting sparticles, where the masses of the lightest and second lightest supersymmetric particle do not differ much in mass. If they exist, low mass SUSY particles could be created in the LHC from two fusing photons emitted by forward-scattered protons. In such two-photon (central exclusive) processes, both protons might remain on-shell and continue their path down the beamline. Central exclusive processes are rather rare, so to advance the study of these events, new tagging techniques are required to record as many of these events as possible. We are interested in the kinematic range with a mass difference of less than 60 GeV between the slepton and the neutralino, which are the supersymmetric partners of the lepton and the neutral bosons. The CMS detector in the LHC has two event filtering (trigger) systems; the low level (L1) trigger and the high level trigger (HLT). A study has been conducted on how a specific HLT could increase the number of recorded events for the previously mentioned process, without significantly increasing the total HLT rate. To select more events, the transverse momentum threshold value of the produced leptons ought to be lowered. The forward-scattered protons will be detected by the Precision Proton Spectrometer (PPS). This thesis shows that requiring proton tracks in the PPS tracking detectors and tuning the multiplicity cut of these, will compensate for the lowering of the transverse momentum threshold, keeping the overall HLT rate sensible, while still enabling more interesting physics to be recorded.
  • CMS Collabration; Eerola, P.; Forthomme, L.; Kirschenmann, H.; Osterberg, K.; Voutilainen, M.; Garcia, F.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Linden, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Sirunyan, A. M. (2020)
    A search is presented for a charged Higgs boson heavier than the top quark, produced in association with a top quark, or with a top and a bottom quark, and decaying into a top-bottom quark-antiquark pair. The search is performed using proton-proton collision data collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). Events are selected by the presence of a single isolated charged lepton (electron or muon) or an opposite-sign dilepton (electron or muon) pair, categorized according to the jet multiplicity and the number of jets identified as originating from b quarks. Multivariate analysis techniques are used to enhance the discrimination between signal and background in each category. The data are compatible with the standard model, and 95% confidence level upper limits of 9.6-0.01 pb are set on the charged Higgs boson production cross section times branching fraction to a top-bottom quark-antiquark pair, for charged Higgs boson mass hypotheses ranging from 200 GeV to 3 TeV. The upper limits are interpreted in different minimal supersymmetric extensions of the standard model.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T. (2018)
    Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of proton proton collision data collected at root s = 13 TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simplified models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180 GeV and 1150 GeV are excluded at 95% CL. These results significantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations.
  • Khachatryan, V.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; The CMS collaboration (2017)
    Results are presented from a search for the electroweak production of supersymmetric particles in pp collisions in final states with two T leptons. The data sample corresponds to an integrated luminosity between 18.1 fb(-1) and 19.6 fb(-1) depending on the final state of T lepton decays, at root s = 8 TeV, collected by the CMS experiment at the LHC. The observed event yields in the signal regions are consistent with the expected standard model backgrounds. The results are interpreted using simplified models describing the pair production and decays of charginos or T sleptons. For models describing the pair production of the lightest chargino, exclusion regions are obtained in the plane of chargino mass vs. neutralino mass under the following assumptions: the chargino decays into third-generation sleptons, which are taken to be the lightest sleptons, and the sleptons masses lie midway between those of the chargino and the neutralino. Chargino masses below 420 GeV are excluded at a 95% confidence level in the limit of a massless neutralino, and for neutralino masses up to 100 GeV, chargino masses up to 325 GeV are excluded at 95% confidence level. Constraints are also placed on the cross section for pair production of T sleptons as a function of mass, assuming a massless neutralino.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    A search is reported for heavy resonances decaying into e mu final states in proton-proton collisions recorded by the CMS experiment at the CERN LHC at root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). The search focuses on resonance masses above 200 GeV. With no evidence found for physics beyond the standard model in the e mu mass spectrum, upper limits are set at 95% confidence level on the product of the cross section and branching fraction for this lepton-flavor violating signal. Based on these results, resonant tau sneutrino production in R-parity violating supersymmetric models is excluded for masses below 1.7 TeV, for couplings lambda(132) = lambda(231) = lambda(311) = 0.01. Heavy Z' gauge bosons with lepton-flavor violating transitions are excluded for masses up to 4.4 TeV. The eit mass spectrum is also interpreted in terms of non-resonant contributions from quantum black-hole production in models with one to six extra spatial dimensions, and lower mass limits are found between 3.6 and 5.6 TeV. In all interpretations used in this analysis, the results of this search improve previous limits by about 1 TeV. These limits correspond to the most sensitive values obtained at colliders.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    A search for supersymmetry (SUSY) is performed in final states comprising one or more jets and missing transverse momentum using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded with the CMS detector at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb(-1). The number of signal events is found to agree with the expected background yields from standard model processes. The results are interpreted in the context of simplified models of SUSY that assume the production of gluino or squark pairs and their prompt decay to quarks and the lightest neutralino. The masses of bottom, top, and mass-degenerate light-flavour squarks are probed up to 1050, 1000, and 1325 GeV, respectively. The gluino mass is probed up to 1900, 1650, and 1650 GeV when the gluino decays via virtual states of the aforementioned squarks. The strongest mass bounds on the neutralinos from gluino and squark decays are 1150 and 575 GeV, respectively. The search also provides sensitivity to simplified models inspired by split SUSY that involve the production and decay of long-lived gluinos. Values of the proper decay length CT0 from 10(-3) to 10(5) mm are considered, as well as a metastable gluino scenario. Gluino masses up to 1750 and 900 GeV are probed for CT0 = 1mm and for the metastable state, respectively. The sensitivity is moderately dependent on model assumptions for CT0 greater than or similar to 1 m. The search provides coverage of the CT0 parameter space for models involving long-lived gluinos that is complementary to existing techniques at the LHC.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T. (2018)
    Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at root s = 8 TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The final state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses below 650-730 GeV.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T. (2018)
    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb(-1) of proton-proton collisions at root s = 13TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500-1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980-1200 GeV are excluded depending on the mass of the next-to-lightest neutralino.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    Results are reported from a search for physics beyond the standard model in proton-proton collisions at a center-of-mass energy of root s=13TeV. The search uses a signature of a single lepton, large jet and bottom quark jet multiplicities, and high sum of large-radius jet masses, without any requirement on the missing transverse momentum in an event. The data sample corresponds to an integrated luminosity of 35.9 fb(-1) recorded by the CMS experiment at the LHC. No significant excess beyond the prediction from standard model processes is observed. The results are interpreted in terms of upper limits on the production cross section for R-parity violating supersymmetric extensions of the standard model using a benchmark model of gluino pair production, in which each gluino decays promptly via (g) over tilde -> tbs. Gluinos with a mass below 1610 GeV are excluded at 95% confidence level. (c) 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T. (2018)
    A search for new physics is carried out in events with at least three electrons or muons in any combination, jets, and missing transverse momentum. Results are based on the sample of proton-proton collision data produced by the LHC at a center-of-mass energy of 13TeV and collected by the CMS experiment in 2016. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb(-1). Events are classified according to the number of b jets, missing transverse momentum, hadronic transverse momentum, and the invariant mass of same-flavor dilepton pairs with opposite charge. No significant excess above the expected standard model background is observed. Exclusion limits at 95% confidence level are computed for four different supersymmetric simplified models with pair production of gluinos or third-generation squarks. In the model with gluino pair production, with subsequent decays into a top quark-antiquark pair and a neutralino, gluinos with masses smaller than 1610 GeV are excluded for a massless lightest supersymmetric particle. In the case of bottom squark pair production, the bottom squark masses are excluded up to 840 GeV for charginos lighter than 200 GeV. For a simplified model of heavy top squark pair production, the (t) over tilde (2) mass is excluded up to 720, 780, or 710 GeV for models with an exclusive (t) over tilde (2) -> (t) over tilde H-1 decay, an exclusive (t) over tilde (2) -> (t) over tilde (1)Z decay, or an equally probable mix of those two decays. In order to provide a simplified version of the analysis for easier interpretation, a small set of aggregate signal regions also has been de fined, providing a compromise between simplicity and analysis sensitivity.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T. (2018)
    Results are presented from a search for supersymmetry in events with a single electron or muon and hadronic jets. The data correspond to a sample of proton-proton collisions at root s = 13 TeV with an integrated luminosity of 35.9 fb(-1), recorded in 2016 by the CMS experiment. A number of exclusive search regions are defined according to the number of jets, the number of b-tagged jets, the scalar sum of the transverse momenta of the jets, and the scalar sum of the missing transverse momentum and the transverse momentum of the lepton. Standard model background events are reduced significantly by requiring a large azimuthal angle between the direction of the lepton and of the reconstructed W boson, computed under the hypothesis that all of the missing transverse momentum in the event arises from a neutrino produced in the leptonic decay of the W boson. The numbers of observed events are consistent with the expectations from standard model processes, and the results are used to set lower limits on supersymmetric particle masses in the context of two simplified models of gluino pair production. In the first model, where each gluino decays to a top quark-antiquark pair and a neutralino, gluino masses up to 1.8 TeV are excluded at the 95% CL. The second model considers a three-body decay to a light quark-antiquark pair and a chargino, which subsequently decays to a W boson and a neutralino. In this model, gluinos are excluded up to 1.9 TeV. (C) 2018 The Author. Published by Elsevier B.V.
  • The CMS collaboration; Sirunyan, A. M.; Tumasyan, A.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Brücken, Erik; Garcia, F.; Havukainen, J.; Karimäki, V.; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Luukka, P.; Tuuva, T. (2021)
  • The CMS collaboration; Eerola, P.; Kirschenmann, H.; Voutilainen, M.; Havukainen, J.; Heikkila, J. K.; Jarvinen, T.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Forthomme, L.; Österberg, K.; Garcia, F.; Sirunyan, A. M. (2019)
    Results are reported from a search for supersymmetric particles in the final state with multiple jets and large missing transverse momentum. The search uses a sample of proton-proton collisions at root s = 13 TeV collected with the CMS detector in 2016-2018, corresponding to an integrated luminosity of 137 fb(-1), representing essentially the full LHC Run 2 data sample. The analysis is performed in a four-dimensional search region defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No significant excess in the event yield is observed relative to the expected background contributions from standard model processes. Limits on the pair production of gluinos and squarks are obtained in the framework of simplified models for supersymmetric particle production and decay processes. Assuming the lightest supersymmetric particle to be a neutralino, lower limits on the gluino mass as large as 2000 to 2310 GeV are obtained at 95% confidence level, while lower limits on the squark mass as large as 1190 to 1630 GeV are obtained, depending on the production scenario.
  • The CMS collaboration; Sirunyan, A. M.; Tumasyan, A.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Brücken, Erik; Garcia, F.; Havukainen, J.; Karimäki, V.; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2020)
    A search for new physics in events with two highly Lorentz-boosted Z bosons and large missing transverse momentum is presented. The analyzed proton-proton collision data, corresponding to an integrated luminosity of 137 fb(-1), were recorded at s = 13 TeV by the CMS experiment at the CERN LHC. The search utilizes the substructure of jets with large radius to identify quark pairs from Z boson decays. Backgrounds from standard model processes are suppressed by requirements on the jet mass and the missing transverse momentum. No significant excess in the event yield is observed beyond the number of background events expected from the standard model. For a simplified supersymmetric model in which the Z bosons arise from the decay of gluinos, an exclusion limit of 1920 GeV on the gluino mass is set at 95% confidence level. This is the first search for beyond-standard-model production of pairs of boosted Z bosons plus large missing transverse momentum.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search for the production of a pair of top squarks at the LHC is presented. This search targets a region of parameter space where the kinematics of top squark pair production and top quark pair production are very similar, because of the mass difference between the top squark and the neutralino being close to the top quark mass. The search is performed with 35.9 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV, collected by the CMS detector in 2016, using events containing one electron-muon pair with opposite charge. The search is based on a precise estimate of the top quark pair background, and the use of the M-T2 variable, which combines the transverse mass of each lepton and the missing transverse momentum. No excess of events is found over the standard model predictions. Exclusion limits are placed at 95% confidence level on the production of top squarks up to masses of 208 GeV for models with a mass difference between the top squark and the lightest neutralino close to that of the top quark.