Browsing by Subject "T-CELL"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Brakenhielm, Ebba; Alitalo, Kari (2019)
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.
  • Gershony, Liza C.; Belanger, Janelle M.; Hytonen, Marjo K.; Lohi, Hannes; Famula, Thomas R.; Oberbauer, Anita M. (2020)
    Background Primary hypoadrenocorticism (or Addison's disease, AD) is an autoimmune disease that results in destruction of the adrenal cortex and consequent adrenal insufficiency. The disease has been described in purebred and mixed breed dogs, although some breeds, including the Bearded Collie, are at increased risk for AD. Candidate gene approaches have yielded few associations that appear to be breed-specific. A single other genome-wide association study reported no significant regions of association for AD in Standard Poodles. The present study aimed to identify genomic regions of association for canine AD in Bearded Collies. Results Our study consists of the first genome-wide association analysis to identify a genome-wide significant region of association with canine AD (CFA18). Peaks of suggestive association were also noted on chromosomes 11, 16 and 29. Logistic regression analysis supported an additive effect of risk genotypes at these smaller effect loci on the probability of disease associated with carrying a risk genotype on CFA18. Potential candidate genes involved in adrenal steroidogenesis, regulation of immune responses and/or inflammation were identified within the associated regions of chromosomes 11 and 16. The gene-poor regions of chromosomes 18 and 29 may, however, harbor regulatory sequences that can modulate gene expression and contribute to disease susceptibility. Conclusion Our findings support the polygenic and complex nature of canine AD and identified a strongly associated locus on CFA18 that, when combined with three other smaller effect loci, was predictive of disease. The results offer progress in the identification of susceptibility loci for canine AD in the Bearded Collie. Further studies are needed to confirm association with the suggested candidate genes and identify actual causative mutations involved with AD susceptibility in this breed.
  • Eränkö, Elina; Ilander, Mette; Tuomiranta, Mirja; Mäkitie, Antti; Lassila, Tea; Kreutzman, Anna; Klemetti, Paula; Mustjoki, Satu; Hannula-Jouppi, Katariina; Ranki, Annamari (2018)
    BackgroundNetherton syndrome (NS) is a rare life-threatening syndrome caused by SPINK5 mutations leading to a skin barrier defect and a severe atopic diathesis. NS patients are prone to bacterial infections, but the understanding of the underlying immune deficiency is incomplete.ResultsWe analyzed blood lymphocyte phenotypes and function in relation to clinical infections in 11 Finnish NS patients, aged 3 to 17years, and healthy age-matched controls. The proportion of B cells (CD19(+)) and naive B cells (CD27(-), IgD(+)) were high while memory B cells (CD27(+)) and switched memory B cells (CD27(+)IgM(-)IgD(-)), crucial for the secondary response to pathogens, was below or in the lowest quartile of the reference values in 8/11 (73%) and 9/11 (82%) patients, respectively. The proportion of activated non-differentiated B cells (CD21(low), CD38l(ow)) was below or in the lowest quartile of the reference values in 10/11 (91%) patients. Despite normal T cell counts, the proportion of naive CD4(+) T cells was reduced significantly and the proportion of CD8(+) T central memory significantly elevated. An increased proportion of CD57(+) CD8(+) T cells indicated increased differentiation potential of the T cells. The proportion of cytotoxic NK cells was elevated in NS patients in phenotypic analysis based on CD56DIM, CD16(+) and CD27(-) NK cells but in functional analysis, decreased expression of CD107a/b indicated impaired cytotoxicity.The T and NK cell phenotype seen in NS patients also significantly differed from that of age-matched atopic dermatitis (AD) patients, indicating a distinctive profile in NS. The frequency of skin infections correlated with the proportion of CD62L(+) T cells, naive CD4(+) and CD27(+) CD8(+) T cells and with activated B cells. Clinically beneficial intravenous immunoglobulin therapy (IVIG) increased naive T cells and terminal differentiated effector memory CD8(+) cells and decreased the proportion of activated B cells and plasmablasts in three patients studied.ConclusionsThis study shows novel quantitative and functional aberrations in several lymphocyte subpopulations, which correlate with the frequency of infections in patients with Netherton syndrome. IVIG therapy normalized some dysbalancies and was clinically beneficial.
  • Hemminki, Otto; Parviainen, Suvi; Juhila, Juuso; Turkki, Riku; Linder, Nina; Lundin, Johan; Kankainen, Matti; Ristimaki, Ari; Koski, Anniina; Liikanen, Ilkka; Oksanen, Minna; Nettelbeck, Dirk M.; Kairemo, Kalevi; Partanen, Kaarina; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli (2015)
    Oncolytic viruses that selectively replicate in tumor cells can be used for treatment of cancer. Accumulating data suggests that virus induced oncolysis can enhance anti-tumor immunity and break immune tolerance. To capitalize on the immunogenic nature of oncolysis, we generated a quadruple modified oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (GMCSF). Ad5/3-E2F-Delta 24-GMCSF (CGTG-602) was engineered to contain a tumor specific E2F1 promoter driving an E1 gene deleted at the retinoblastoma protein binding site ("Delta 24"). The fiber features a knob from serotype 3 for enhanced gene delivery to tumor cells. The virus was tested preclinically in vitro and in vivo and then 13 patients with solid tumors refractory to standard therapies were treated. Treatments were well tolerated and frequent tumor-and adenovirus-specific T-cell immune responses were seen. Overall, with regard to tumor marker or radiological responses, signs of antitumor efficacy were seen in 9/12 evaluable patients (75%). The radiological disease control rate with positron emission tomography was 83% while the response rate (including minor responses) was 50%. Tumor biopsies indicated accumulation of immunological cells, especially T-cells, to tumors after treatment. RNA expression analyses of tumors indicated immunological activation and metabolic changes secondary to virus replication.
  • Martikainen, Maria-Viola; Rönkkö, Teemu J.; Schaub, Bianca; Täubel, Martin; Gu, Cheng; Wong, Gary W. K.; Li, Jing; Pekkanen, Juha; Komppula, Mika; Hirvonen, Maija-Riitta; Jalava, Pasi I.; Roponen, Marjut (2018)
    Background Studies conducted in farm environments suggest that diverse microbial exposure promotes children's lung health. The underlying mechanisms are unclear, and the development of asthma-preventive strategies has been delayed. More comprehensive investigation of the environment-induced immunoregulation is required for better understanding of asthma pathogenesis and prevention. Exposure to air pollution, including particulate matter (PM), is a risk factor for asthma, thus providing an excellent counterpoint for the farm-effect research. Lack of comparable data, however, complicates interpretation of the existing information. We aimed to explore the immunoregulatory effects of cattle farm dust (protective, Finland) and urban air PM (high-risk, China) for the first time using identical research methods. Methods We stimulated PBMCs of 4-year-old children (N = 18) with farm dust and size-segregated PM and assessed the expression of immune receptors CD80 and ILT4 on dendritic cells and monocytes as well as cytokine production of PBMCs. Environmental samples were analysed for their composition. Results Farm dust increased the percentage of cells expressing CD80 and the cytokine production of children's immune cells, whereas PM inhibited the expression of important receptors and the production of soluble mediators. Although PM samples induced parallel immune reactions, the size-fraction determined the strength of the effects. Conclusions Our study demonstrates the significance of using the same research framework when disentangling shared and distinctive immune pathways operating in different environments. Observed stimulatory effects of farm dust and inhibitory effects of PM could shape responses towards respiratory pathogens and allergens, and partly explain differences in asthma prevalence between studied environments.
  • Pavlu, Jiri; Labopin, Myriam; Niittyvuopio, Riitta; Socie, Gerard; Yakoub-Agha, Ibrahim; Wu, Depei; Remenyi, Peter; Passweg, Jakob; Beelen, Dietrich W.; Aljurf, Mahmoud; Kroeger, Nicolaus; Labussiere-Wallet, Helene; Peric, Zinaida; Giebel, Sebastian; Nagler, Arnon; Mohty, Mohamad (2019)
    Background: Assessment of measurable residual disease (MRD) is rapidly transforming the therapeutic and prognostic landscape of a wide range of hematological malignancies. Its prognostic value in acute lymphoblastic leukemia (ALL) has been established and MRD measured at the end of induction is increasingly used to guide further therapy. Although MRD detectable immediately before allogeneic hematopoietic cell transplantation (HCT) is known to be associated with poor outcomes, it is unclear if or to what extent this differs with different types of conditioning. Methods: In this retrospective registry study, we explored whether measurable residual disease (MRD) before allogeneic hematopoietic cell transplantation (HCT) for acute lymphoblastic leukemia is associated with different outcomes in recipients of myeloablative total body irradiation (TBI)-based versus chemotherapy-based conditioning. We analyzed outcomes of 2780 patients (median age 38 years, range 18-72) who underwent first HCT in complete remission between 2000 and 2017 using sibling or unrelated donors. Results: In 1816 of patients, no disease was detectable, and in 964 patients, MRD was positive. Conditioning was TBI-based in 2122 (76%) transplants. In the whole cohort MRD positivity was a significant independent factor for lower overall survival (OS) and leukemia-free survival (LFS), and for higher relapse incidence (RI), with respective hazard ratios (HR, 95% confidence intervals) of 1.19 (1.02-1.39), 1.26 (1.1-1.44), and 1.51 (1.26-1.8). TBI was associated with a higher OS, LFS, and lower RI with HR of 0.75 (0.62-0.90), 0.70 (0.60-0.82), and 0.60 (0.49-0.74), respectively. No significant interaction was found between MRD status and conditioning. When investigating the impact of MRD separately in the TBI and chemotherapy-based conditioning cohorts by multivariate analysis, we found MRD positivity to be associated with lower OS and LFS and higher RI in the TBI group, and with higher RI in the chemotherapy group. TBI-based conditioning was associated with improved outcomes in both MRD-negative and MRD-positive patients. Conclusions: In this large study, we confirmed that patients who are MRD-negative prior to HCT achieve superior outcomes. This is particularly apparent if TBI conditioning is used. All patients with ALL irrespective of MRD status benefit from TBI-based conditioning in the myeloablative setting.
  • Giannella, Maddalena; Pierrotti, Ligia C.; Helanterä, Ilkka; Manuel, Oriol (2021)
    In response to the COVID-19 pandemic, SARS-CoV-2 vaccines have been developed at an unparalleled speed, with 14 SARS-CoV-2 vaccines currently authorized. Solid-organ transplant (SOT) recipients are at risk for developing a higher rate of COVID-19-related complications and therefore they are at priority for immunization against SARS-CoV-2. Preliminary data suggest that although SARS-CoV-2 vaccines are safe in SOT recipients (with similar rate of adverse events than in the general population), the antibody responses are decreased in this population. Risk factors for poor vaccine immunogenicity include older age, shorter time from transplantation, use of mycophenolate and belatacept, and worse allograft function. SOT recipients should continue to be advised to maintain hand hygiene, use of facemasks, and social distancing after SARS-CoV-2 vaccine. Vaccination of household contacts should be also prioritized. Although highly encouraged for research purposes, systematic assessment in clinical practice of humoral and cellular immune responses after SARS-CoV-2 vaccination is controversial, since correlation between immunological findings and clinical protection from severe COVID-19, and cutoffs for protection are currently unknown in SOT recipients. Alternative immunization schemes, including a booster dose, higher doses, and modulation of immunosuppression during vaccination, need to be assessed in the context of well-designed clinical trials.
  • Tesi, Bianca; Lagerstedt-Robinson, Kristina; Chiang, Samuel C. C.; Ben Bdira, Eya; Abboud, Miguel; Belen, Burcu; Devecioglu, Omer; Fadoo, Zehra; Yeoh, Allen E. J.; Erichsen, Hans Christian; Mottonen, Merja; Akar, Himmet Haluk; Hästbacka, Johanna; Kaya, Zuhre; Nunes, Susana; Patiroglu, Turkan; Sabel, Magnus; Saribeyoglu, Ebru Tugrul; Tvedt, Tor Henrik; Unal, Ekrem; Unal, Sule; Unuvar, Aysegul; Meeths, Marie; Henter, Jan-Inge; Nordenskjold, Magnus; Bryceson, Yenan T. (2015)
    Background: Hemophagocytic lymphohistiocytosis (HLH) is a rapid-onset, potentially fatal hyperinflammatory syndrome. A prompt molecular diagnosis is crucial for appropriate clinical management. Here, we validated and prospectively evaluated a targeted high-throughput sequencing approach for HLH diagnostics. Methods: A high-throughput sequencing strategy of 12 genes linked to HLH was validated in 13 patients with previously identified HLH-associated mutations and prospectively evaluated in 58 HLH patients. Moreover, 2504 healthy individuals from the 1000 Genomes project were analyzed in silico for variants in the same genes. Results: Analyses revealed a mutation detection sensitivity of 97.3 %, an average coverage per gene of 98.0 %, and adequate coverage over 98.6 % of sites previously reported as mutated in these genes. In the prospective cohort, we achieved a diagnosis in 22 out of 58 patients (38 %). Genetically undiagnosed HLH patients had a later age at onset and manifested higher frequencies of known secondary HLH triggers. Rare, putatively pathogenic monoallelic variants were identified in nine patients. However, such monoallelic variants were not enriched compared with healthy individuals. Conclusions: We have established a comprehensive high-throughput platform for genetic screening of patients with HLH. Almost all cases with reduced natural killer cell function received a diagnosis, but the majority of the prospective cases remain genetically unexplained, highlighting genetic heterogeneity and environmental impact within HLH. Moreover, in silico analyses of the genetic variation affecting HLH-related genes in the general population suggest caution with respect to interpreting causality between monoallelic mutations and HLH. A complete understanding of the genetic susceptibility to HLH thus requires further in-depth investigations, including genome sequencing and detailed immunological characterization.
  • Daryabor, Gholamreza; Atashzar, Mohamad Reza; Kabelitz, Dieter; Meri, Seppo; Kalantar, Kurosh (2020)
    Metabolic abnormalities such as dyslipidemia, hyperinsulinemia, or insulin resistance and obesity play key roles in the induction and progression of type 2 diabetes mellitus (T2DM). The field of immunometabolism implies a bidirectional link between the immune system and metabolism, in which inflammation plays an essential role in the promotion of metabolic abnormalities (e.g., obesity and T2DM), and metabolic factors, in turn, regulate immune cell functions. Obesity as the main inducer of a systemic low-level inflammation is a main susceptibility factor for T2DM. Obesity-related immune cell infiltration, inflammation, and increased oxidative stress promote metabolic impairments in the insulin-sensitive tissues and finally, insulin resistance, organ failure, and premature aging occur. Hyperglycemia and the subsequent inflammation are the main causes of micro- and macroangiopathies in the circulatory system. They also promote the gut microbiota dysbiosis, increased intestinal permeability, and fatty liver disease. The impaired immune system together with metabolic imbalance also increases the susceptibility of patients to several pathogenic agents such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, the need for a proper immunization protocol among such patients is granted. The focus of the current review is to explore metabolic and immunological abnormalities affecting several organs of T2DM patients and explain the mechanisms, whereby diabetic patients become more susceptible to infectious diseases.