Browsing by Subject "T-CELLS"

Sort by: Order: Results:

Now showing items 1-20 of 54
  • Van Horebeek, Lies; Hilven, Kelly; Mallants, Klara; Van Nieuwenhuijze, Annemarie; Kelkka, Tiina; Savola, Paula; Mustjoki, Satu; Schlenner, Susan M.; Liston, Adrian; Dubois, Benedicte; Goris, An (2019)
    The role of somatic variants in diseases beyond cancer is increasingly being recognized, with potential roles in autoinflammatory and autoimmune diseases. However, as mutation rates and allele fractions are lower, studies in these diseases are substantially less tolerant of false positives, and bio-informatics algorithms require high replication rates. We developed a pipeline combining two variant callers, MuTect2 and VarScan2, with technical filtering and prioritization. Our pipeline detects somatic variants with allele fractions as low as 0.5% and achieves a replication rate of > 55%. Validation in an independent data set demonstrates excellent performance (sensitivity > 57%, specificity > 98%, replication rate > 80%). We applied this pipeline to the autoimmune disease multiple sclerosis (MS) as a proof-of-principle. We demonstrate that 60% of MS patients carry 2-10 exonic somatic variants in their peripheral blood T and B cells, with the vast majority (80%) occurring in T cells and variants persisting over time. Synonymous variants significantly co-occur with non-synonymous variants. Systematic characterization indicates somatic variants are enriched for being novel or very rare in public databases of germline variants and trend towards being more damaging and conserved, as reflected by higher phred-scaled combined annotation-dependent depletion (CADD) and genomic evolutionary rate profiling (GERP) scores. Our pipeline and proof-of-principle now warrant further investigation of common somatic genetic variation on top of inherited genetic variation in the context of autoimmune disease, where it may offer subtle survival advantages to immune cells and contribute to the capacity of these cells to participate in the autoimmune reaction.
  • Windbichler, Katharina; Michalopoulou, Eleni; Palamides, Pia; Pesch, Theresa; Jelinek, Christine; Vapalahti, Olli; Kipar, Anja; Hetzel, Udo; Hepojoki, Jussi (2019)
    Boid Inclusion Body Disease (BIBD) is a potentially fatal disease reported in captive boid snakes worldwide that is caused by reptarenavirus infection. Although the detection of intracytoplasmic inclusion bodies (IB) in blood cells serves as the gold standard for the ante mortem diagnosis of BIBD, the mechanisms underlying IB formation and the pathogenesis of BIBD are unknown. Knowledge on the reptile immune system is sparse compared to the mammalian counterpart, and in particular the response towards reptarenavirus infection is practically unknown. Herein, we investigated a breeding collection of 70 Boa constrictor snakes for BIBD, reptarenavirus viraemia, anti-reptarenavirus IgM and IgY antibodies, and population parameters. Using NGS and RT-PCR on pooled blood samples of snakes with and without BIBD, we could identify three different reptarenavirus S segments in the collection. The examination of individual samples by RT-PCR indicated that the presence of University of Giessen virus (UGV)-like S segment strongly correlates with IB formation. We could also demonstrate a negative correlation between BIBD and the presence of anti-UGV NP IgY antibodies. Further evidence of an association between antibody response and BIBD is the finding that the level of anti-reptarenavirus antibodies measured by ELISA was lower in snakes with BIBD. Furthermore, female snakes had a significantly lower body weight when they had BIBD. Taken together our findings suggest that the detection of the UGV-/S6-like S segment and the presence of anti-reptarenavirus IgY antibodies might serve as a prognostic tool for predicting the development of BIBD.
  • Nicoletti, Paola; Aithal, Guruprasad P.; Bjornsson, Einar S.; Andrade, Raul J.; Sawle, Ashley; Arrese, Marco; Barnhart, Huiman X.; Bondon-Guitton, Emmanuelle; Hayashi, Paul H.; Bessone, Fernando; Carvajal, Alfonso; Cascorbi, Ingolf; Cirulli, Elizabeth T.; Chalasani, Naga; Conforti, Anita; Coulthard, Sally A.; Daly, Mark J.; Day, Christopher P.; Dillon, John F.; Fontana, Robert J.; Grove, Jane I.; Hallberg, Par; Hernandez, Nelia; Ibanez, Luisa; Kullak-Ublick, Gerd A.; Laitinen, Tarja; Larrey, Dominique; Lucena, M. Isabel; Maitland-van der Zee, Anke H.; Martin, Jennifer H.; Molokhia, Mariam; Pirmohamed, Munir; Powell, Elizabeth E.; Qin, Shengying; Serrano, Jose; Stephens, Camilla; Stolz, Andrew; Wadelius, Mia; Watkins, Paul B.; Floratos, Aris; Shen, Yufeng; Nelson, Matthew R.; Urban, Thomas J.; Daly, Ann K.; Int Drug-Induced Liver Injury Cons; Drug-Induced Liver Injury Network; Int Serious Adverse Events Consort (2017)
    BACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for druginduced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A* 33: 01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9 - 3.8; P = 2.4 x 10(-8)) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6 - 2.5; P = 9.7 x 10(-9)). The association with A* 33: 01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A* 33: 01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6 - 2.7; P = 4.8 x 10(-9)). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0 - 9.5; P = 7.1 x 10(-9)). We validated the association between A* 33: 01 terbinafine-and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A* 33: 01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors.
  • Karaman, Sinem; Hollmen, Maija; Robciuc, Marius R.; Alitalo, Annamari; Nurmi, Harri; Morf, Bettina; Buschle, Dorina; Alkan, H. Furkan; Ochsenbein, Alexandra M.; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael (2015)
    Objective: Elevated serum levels of the lymphangiogenic factors VEGF-C and -D have been observed in obese individuals but their relevance for the metabolic syndrome has remained unknown. Methods: K14-VEGFR-3-Ig (sR3) mice that constitutively express soluble-VEGFR-3eIg in the skin, scavenging VEGF-C and -D, and wildtype (WT) mice were fed either chow or high-fat diet for 20 weeks. To assess the effect of VEGFR-3 blockage on adipose tissue growth and insulin sensitivity, we evaluated weight gain, adipocyte size and hepatic lipid accumulation. These results were complemented with insulin tolerance tests, FACS analysis of adipose tissue macrophages, in vitro 3T3-L1 differentiation assays and in vivo blocking antibody treatment experiments. Results: We show here that sR3 mice are protected from obesity-induced insulin resistance and hepatic lipid accumulation. This protection is associated with enhanced subcutaneous adipose tissue hyperplasia and an increased number of alternatively-activated (M2) macrophages in adipose tissue. We also show that VEGF-C and -D are chemotactic for murine macrophages and that this effect is mediated by VEGFR-3, which is upregulated on M1 polarized macrophages. Systemic antibody blockage of VEGFR-3 in db/db mice reduces adipose tissue macrophage infiltration and hepatic lipid accumulation, and improves insulin sensitivity. Conclusions: These results reveal an unanticipated role of the lymphangiogenic factors VEGF-C and -D in the mediation of metabolic syndrome-associated adipose tissue inflammation. Blockage of these lymphangiogenic factors might constitute a new therapeutic strategy for the prevention of obesity-associated insulin resistance. (C) 2014 The Authors. Published by Elsevier GmbH.
  • Jahromi, Leila Pourtalebi; Shahbazi, Mohammad-Ali; Maleki, Aziz; Azadi, Amir; Santos, Helder A. (2021)
    Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
  • Kreutzman, Anna; Rohon, Peter; Faber, Edgar; Indrak, Karel; Juvonen, Vesa; Kairisto, Veli; Voglova, Jaroslava; Sinisalo, Marjatta; Flochova, Emilia; Vakkila, Jukka; Arstila, Petteri; Porkka, Kimmo; Mustjoki, Satu (2011)
  • Gonzalez, Marta Lopez; Oosterhoff, Dinja; Lindenberg, Jelle J.; Milenova, Ioanna; Lougheed, Sinead M.; Martianez, Tania; Dekker, Henk; Quixabeira, Dafne Carolina Alves; Hangalapura, Basav; Joore, Jos; Piersma, Sander R.; Cervera-Carrascon, Victor; Santos, Joao Manuel; Scheper, Rik J.; Verheul, Henk M. W.; Jimenez, Connie R.; Van De Ven, Rieneke; Hemminki, Akseli; Van Beusechem, Victor W.; De Gruijl, Tanja D. (2019)
    In patients with cancer, the functionality of Dendritic Cells (DC) is hampered by high levels of tumor-derived suppressive cytokines, which interfere with DC development and maturation. Poor DC development can limit the efficacy of immune checkpoint blockade and in vivo vaccination approaches. Interference in intracellular signaling cascades downstream from the receptors of major tumor-associated suppressive cytokines like IL-10 and IL-6, might improve DC development and activation, and thus enhance immunotherapy efficacy. We performed exploratory functional screens on arrays consisting of >1000 human kinase peptide substrates to identify pathways involved in DC development and its inhibition by IL-10 or IL-6. The resulting alterations in phosphorylation of the kinome substrate profile pointed to glycogen-synthase kinase-3 beta (GSK3 beta) as a pivotal kinase in both DC development and suppression. GSK3 beta inhibition blocked human DC differentiation in vitro, which was accompanied by decreased levels of IL-12p70 secretion, and a reduced capacity for T cell priming. More importantly, adenoviral transduction of monocytes with a constitutively active form of GSK3 beta induced resistance to the suppressive effects of IL-10 and melanoma-derived supernatants alike, resulting in improved DC development, accompanied by up-regulation of co-stimulatory markers, an increase in CD83 expression levels in mature DC, and diminished release of IL-10. Moreover, adenovirus-mediated intratumoral manipulation of this pathway in an in vivo melanoma model resulted in DC activation and recruitment, and in improved immune surveillance and tumor control. We propose the induction of constitutive GSK3 beta activity as a novel therapeutic means to bolster DC functionality in the tumor microenvironment.
  • Hasan, Amal; Kochumon, Shihab; Al-Ozairi, Ebaa; Tuomilehto, Jaakko; Al-Mulla, Fahd; Ahmad, Rasheed (2020)
    Purpose: The suppression of tumorigenicity 2 (ST2) has two main splice variants including a membrane bound (ST2) form, which activates the myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-kappa B) signaling pathway, and a secreted soluble form (sST2), which acts as a decoy receptor for ST2 ligand, interleukin (IL)-33. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D). In humans, adipose tissue IL-33 displays distinct correlation profiles with glycated hemoglobin, ST2, and other immunometabolic mediators, depending on the glycemic health of the individuals. We determined whether adipose tissue ST2 displays distinct correlation profiles with immunometabolic mediators and whether ST2 and/or IL-33 are correlated with intracellular signaling molecules. Patients and Methods: A total of 91 adults with normal glycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissues were isolated and mRNA expression of biomarkers was measured. Results: In individuals with normal glycemia, adipose tissue ST2 was directly correlated with chemokine (C-C motif) ligand (CCL)-2, CCL5, IL-12, fibrinogen-like protein 2 (FGL2) and interferon regulatory factor (IRF)-4, but inversely correlated with cytochrome C oxidase subunit 7A1. IL-33 and ST2 were directly correlated with tumor necrosis factor receptorassociated factor 6 (TRAF6), NF-kappa B, and nuclear factor of activated T-cells 5 (NFAT5). In individuals with prediabetes, ST2 was inversely correlated with IL-5, whereas IL-33 but not ST2 was directly correlated with MyD88 and NF-kappa B. In individuals with T2D, ST2 was directly correlated with CCL2, IL-1 beta, and IRF5. IL-33 and ST2 were directly correlated with MyD88, TRAF6, and NF-kappa B. Conclusion: Adipose tissue ST2 and IL-33 show different correlation profiles with various immunometabolic biomarkers depending on the metabolic state of the individuals. Therefore, targeting the IL-33/ST2 axis might form the basis for novel therapies to combat metabolic disorders.
  • Sioofy-Khojine, Amir-Babak; Lehtonen, Jussi; Nurminen, Noora; Laitinen, Olli H.; Oikarinen, Sami; Huhtala, Heini; Pakkanen, Outi; Ruokoranta, Tanja; Hankaniemi, Minna M.; Toppari, Jorma; Vähä-Mäkilä, Mari; Ilonen, Jorma; Veijola, Riitta; Knip, Mikael; Hyöty, Heikki (2018)
    Aims/hypothesis Islet autoimmunity usually starts with the appearance of autoantibodies against either insulin (IAA) or GAD65 (GADA). This categorises children with preclinical type 1 diabetes into two immune phenotypes, which differ in their genetic background and may have different aetiology. The aim was to study whether Coxsackievirus group B (CVB) infections, which have been linked to the initiation of islet autoimmunity, are associated with either of these two phenotypes in children with HLA-conferred susceptibility to type 1 diabetes. Methods All samples were from children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. Individuals are recruited to the DIPP study from the general population of new-born infants who carry defined HLA genotypes associated with susceptibility to type 1 diabetes. Our study cohort included 91 children who developed IAA and 78 children who developed GADA as their first appearing single autoantibody and remained persistently seropositive for islet autoantibodies, along with 181 and 151 individually matched autoantibody negative control children, respectively. Seroconversion to positivity for neutralising antibodies was detected as the surrogate marker of CVB infections in serial follow-up serum samples collected before and at the appearance of islet autoantibodies in each individual. Results CVB1 infections were associated with the appearance of IAA as the first autoantibody (OR 2.4 [95% CI 1.4, 4.2], corrected p = 0.018). CVB5 infection also tended to be associated with the appearance of IAA, however, this did not reach statistical significance (OR 2.3, [0.7, 7.5], p = 0.163); no other CVB types were associated with increased risk of IAA. Children who had signs of a CVB1 infection either alone or prior to infections by other CVBs were at the highest risk for developing IAA (OR 5.3 [95% CI 2.4, 11.7], p <0.001). None of the CVBs were associated with the appearance of GADA. Conclusions/interpretation CVB1 infections may contribute to the initiation of islet autoimmunity being particularly important in the insulin-driven autoimmune process.
  • Kaustio, Meri; Haapaniemi, Emma; Göös, Helka; Hautala, Timo; Park, Giljun; Syrjänen, Jaana; Einarsdottir, Elisabet; Sahu, Biswajyoti; Kilpinen, Sanna; Rounioja, Samuli; Fogarty, Christopher L.; Glumoff, Virpi; Kulmala, Petri; Katayama, Shintaro; Tamene, Fitsum; Trotta, Luca; Morgunova, Ekaterina; Krjutskov, Kaarel; Nurmi, Katariina; Eklund, Kari; Lagerstedt, Anssi; Helminen, Merja; Martelius, Timi; Mustjoki, Satu; Taipale, Jussi; Saarela, Janna; Kere, Juha; Varjosalo, Markku; Seppanen, Mikko (2017)
    Background: The nuclear factor kappa light-chain enhancer of activated B cells (NF-kappa B) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-kappa B pathway genes cause immunodeficiency. Objective: We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. Methods: We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. Results: In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behc, et disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. Conclusion: Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behcet disease, can be caused by rare monogenic variants in genes of the NF-kappa B pathway.
  • Lammi, Anne; Arikoski, Pekka; Hakulinen, Arja; Schwab, Ursula; Uusitupa, Matti; Heinonen, Seppo; Savilahti, Erkki; Kinnunen, Tuure; Ilonen, Jorma (2016)
    Objective. The development of gliadin-specific antibody and T-cell responses were longitudinally monitored in young children with genetic risk for celiac disease (CD). Material and methods. 291 newborn children positive for HLA-DQB1*02 and -DQA1*05 alleles were followed until 3-4 years of age by screening for tissue transglutaminase autoantibodies (tTGA) by using a commercial ELISA-based kit and antibodies to deamidated gliadin peptide (anti-DGP) by an immunofluorometric assay. Eighty-five of the children were also followed for peripheral blood gliadin-specific CD4(+) T-cell responses by using a carboxyfluorescein diacetate succinimidyl ester-based in vitro proliferation assay. Results. The cumulative incidence of tTGA seropositivity during the follow-up was 6.5%. CD was diagnosed in nine of the tTGA-positive children (3.1%) by duodenal biopsy at a median 3.5 years of age. All of the children with confirmed CD were both IgA and IgG anti-DGP positive at the time of tTGA seroconversion and in over half of the cases IgG anti-DGP positivity even preceded tTGA seroconversion. Peripheral blood T-cell responses to deamidated and native gliadin were detected in 40.5% and 22.2% of the children at the age of 9 months and these frequencies decreased during the follow-up to the levels of 22.2% and 8.9%, respectively. Conclusions. Anti-DGP antibodies may precede tTGA seroconversion and thus frequent monitoring of both tTGA and anti-DGP antibodies may allow earlier detection of CD in genetically susceptible children. Peripheral blood gliadin-specific T-cell responses are relatively common in HLA-DQ2-positive children and are not directly associated with the development of CD.
  • Palkola, Nina V.; Pakkanen, Sari H.; Kantele, Jussi M.; Pakarinen, Laura; Puohiniemi, Ritvaleena; Kantele, Anu (2015)
    Background. Mucosal immune mechanisms in the upper and lower respiratory tracts may serve a critical role in preventing pneumonia due to Streptococcus pneumoniae. Streptococcus pneumoniae-specific plasmablasts presumably originating in the lower respiratory tract have recently been found in the circulation in patients with pneumonia. The localization of an immune response can be evaluated by exploring homing receptors on such plasmablasts, yet no data have thus far described homing receptors in pneumonia. Methods. The expression of alpha(4)beta(7), L-selectin, and cutaneous lymphocyte antigen (CLA) on S. pneumoniae-specific plasmablasts was examined in patients with pneumonia (n = 16) and healthy volunteers given pneumococcal polysaccharide vaccine (PPV; n = 14) or pneumococcal conjugate vaccine (PCV; n = 11). Results. In patients with pneumonia, the proportion of S. pneumoniae-specific plasmablasts expressing L-selectin was high, the proportion expressing alpha(4)beta(7) was moderate, and the proportion expressing CLA was low. The homing receptor alpha(4)beta(7) was expressed more frequently in the pneumonia group than in the PPV (P=.000) and PCV (P=.029) groups, L-selectin was expressed more frequently in the PPV group than in the PCV group (P=.014); and CLA was expressed more frequently in the pneumonia group than in the PPV group (P=.001). Conclusions. The homing receptor profile in patients with pneumonia was unique yet it was closer to that in PCV recipients than in PPV recipients. These data suggest greater mucosal localization for immune response in natural infection, which is clinically interesting, especially considering the shortcomings of vaccines in protecting against noninvasive pneumonia.
  • Lagus, Heli; Klaas, Mariliis; Juteau, Susanna; Elomaa, Outi; Kere, Juha; Vuola, Jyrki; Jaks, Viljar; Kankuri, Esko (2019)
    Because molecular memories of past inflammatory events can persist in epidermal cells, we evaluated the long-term epidermal protein expression landscapes after dermal regeneration and in psoriatic inflammation. We first characterized the effects of two dermal regeneration strategies on transplants of indicator split-thickness skin grafts (STSGs) in ten adult patients with deep burns covering more than 20% of their body surface area. After fascial excision, three adjacent areas within the wound were randomized to receive a permanent dermal matrix, a temporary granulation-tissue-inducing dressing or no dermal component as control. Control areas were covered with STSG immediately, and treated areas after two-weeks of dermis formation. Epidermis-dermis-targeted proteomics of one-year-follow-up samples were performed for protein expression profiling. Epidermal expression of axonemal dynein heavy chain 10 (DNAH10) was increased 20-fold in samples having had regenerating dermis vs control. Given the dermal inflammatory component found in our dermal regeneration samples as well as in early psoriatic lesions, we hypothesized that DNAH10 protein expression also would be affected in psoriatic skin samples. We discovered increased DNAH10 expression in inflammatory lesions when compared to unaffected skin. Our results associate DNAH10 expression with cell proliferation and inflammation as well as with the epidermal memory resulting from the previous regenerative signals of dermis. This study (ISRCTN14499986) was funded by the Finnish Ministry of Defense and by government subsidies for medical research.
  • Cheng, Jing; Kalliomaki, Marko; Heilig, Hans G. H. J.; Palva, Airi; Lahteenoja, Hannu; de Vos, Willem M.; Salojarvi, Jarkko; Satokari, Reetta (2013)
  • Ding, Xiaolei; Willenborg, Sebastian; Bloch, Wilhelm; Wickström, Sara A.; Wagle, Prerana; Brodesser, Susanne; Roers, Axel; Jais, Alexander; Bruening, Jens C.; Hall, Michael N.; Rueegg, Markus A.; Eming, Sabine A. (2020)
    Background: Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. Objective: Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. Methods: Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [Ric(EKO)] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in Ric(EKO) and control mice. Results: Ric(EKO) newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in Ric(EKO) mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. Conclusion: Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.
  • Koledova, Zuzana; Howard, Beatrice A.; Englund, Johanna; Bach, Karsten; Bentires-Alj, Mohammed; Gonzalez-Suarez, Eva (2018)
    The European Network for Breast Development and Cancer (ENBDC), a worldwide network (http://www.enbdc.org/), celebrated its tenth anniversary with a fantastic meeting last March 15-17, 2018 in Weggis with 76 attendees.
  • Kilpinen, Lotta; Parmar, Amarjit; Greco, Dario; Korhonen, Matti; Lehenkari, Petri; Saavalainen, Paivi; Laitinen, Saara (2016)
    Mesenchymal stromal cells (MSC) are currently used in many cell based therapies. Prior to use in therapy, extensive expansion is required. We used microarray profiling to investigate expansion induced miRNA and mRNA expression changes of bone marrow MSCs (BM-MSCs) derived from old and young donors. The expression levels of 36 miRNAs were altered in cells derived from the old and respectively 39 miRNAs were altered in cells derived from young donors. Of these, only 12 were differentially expressed in both young and old donor BM-MSCs, and their predicted target mRNAs, were mainly linked to cell proliferation and senescence. Further qPCR verification showed that the expression of miR-1915-3p, miR-1207, miR-3665, and miR-762 correlated with the expansion time at passage 8. Previously described BM-MSC-specific miRNA fingerprints were also detected but these remained unchanged during expansion. Interestingly, members of well-studied miR-17/92 cluster, involved in cell cycle regulation, aging and also development of immune system, were down regulated specifically in cells from old donors. The role of this cluster in MSC functionality is worth future studies since it links expansion, aging and immune system together.
  • Brownlie, Demi; Scharenberg, Marlena; Mold, Jeff E.; Hard, Joanna; Kekäläinen, Eliisa; Buggert, Marcus; Nguyen, Son; Wilson, Jennifer N.; Al-Ameri, Mamdoh; Ljunggren, Hans-Gustaf; Marquardt, Nicole; Michaelsson, Jakob (2021)
    Human adaptive-like "memory" CD56(dim)CD16(+) natural killer (NK) cells in peripheral blood from cytomegalovirus-seropositive individuals have been extensively investigated in recent years and are currently explored as a treatment strategy for hematological cancers. However, treatment of solid tumors remains limited due to insufficient NK cell tumor infiltration, and it is unknown whether large expansions of adaptive-like NK cells that are equipped for tissue residency and tumor homing exist in peripheral tissues. Here, we show that human lung and blood contains adaptive-like CD56(bright)CD16(-) NK cells with hallmarks of tissue residency, including expression of CD49a. Expansions of adaptive-like lung tissue-resident NK (trNK) cells were found to be present independently of adaptive-like CD56(dim)CD16(+) NK cells and to be hyperresponsive toward target cells. Together, our data demonstrate that phenotypically, functionally, and developmentally distinct subsets of adaptive-like NK cells exist in human lung and blood. Given their tissue-related character and hyperresponsiveness, human lung adaptive-like trNK cells might represent a suitable alternative for therapies targeting solid tumors.
  • Parmar, Amarjit; Greco, Dario; Venalainen, Jarkko; Gentile, Massimiliano; Dukes, Emma; Saavalainen, Päivi (2013)
  • Purrington, Kristen S.; Visscher, Daniel W.; Wang, Chen; Yannoukakos, Drakoulis; Hamann, Ute; Nevanlinna, Heli; Cox, Angela; Giles, Graham G.; Eckel-Passow, Jeanette E.; Lakis, Sotiris; Kotoula, Vassiliki; Fountzilas, George; Kabisch, Maria; Ruediger, Thomas; Heikkila, Paivi; Blomqvist, Carl; Cross, Simon S.; Southey, Melissa C.; Olson, Janet E.; Gilbert, Judy; Deming-Halverson, Sandra; Kosma, Veli-Matti; Clarke, Christine; Scott, Rodney; Jones, J. Louise; Zheng, Wei; Mannermaa, Arto; Eccles, Diana M.; Vachon, Celine M.; Couch, Fergus J.; Jane Carpenter ABCTC Investigators (2016)
    Distinct subtypes of triple negative (TN) breast cancer have been identified by tumor expression profiling. However, little is known about the relationship between histopathologic features of TN tumors, which reflect aspects of both tumor behavior and tumor microenvironment, and molecular TN subtypes. The histopathologic features of TN tumors were assessed by central review and 593 TN tumors were subjected to whole genome expression profiling using the Illumina Whole Genome DASL array. TN molecular subtypes were defined based on gene expression data associated with histopathologic features of TN tumors. Gene expression analysis yielded signatures for four TN subtypes (basal-like, androgen receptor positive, immune, and stromal) consistent with previous studies. Expression analysis also identified genes significantly associated with the 12 histological features of TN tumors. Development of signatures using these markers of histopathological features resulted in six distinct TN subtype signatures, including an additional basal-like and stromal signature. The additional basal-like subtype was distinguished by elevated expression of cell motility and glucose metabolism genes and reduced expression of immune signaling genes, whereas the additional stromal subtype was distinguished by elevated expression of immunomodulatory pathway genes. Histopathologic features that reflect heterogeneity in tumor architecture, cell structure, and tumor microenvironment are related to TN subtype. Accounting for histopathologic features in the development of gene expression signatures, six major subtypes of TN breast cancer were identified.