Browsing by Subject "TARGET"

Sort by: Order: Results:

Now showing items 1-20 of 24
  • Okutachi, Sunday; Manoharan, Ganesh Babu; Kiriazis, Alexandros; Laurini, Christina; Catillon, Marie; McCormick, Frank; Yli-Kauhaluoma, Jari; Abankwa, Daniel (2021)
    Recently, the highly mutated oncoprotein K-Ras4B (hereafter K-Ras) was shown to drive cancer cell stemness in conjunction with calmodulin (CaM). We previously showed that the covalent CaM inhibitor ophiobolin A (OphA) can potently inhibit K-Ras stemness activity. However, OphA, a fungus-derived natural product, exhibits an unspecific, broad toxicity across all phyla. Here we identified a less toxic, functional analog of OphA that can efficiently inactivate CaM by covalent inhibition. We analyzed a small series of benzazulenones, which bear some structural similarity to OphA and can be synthesized in only six steps. We identified the formyl aminobenzazulenone 1, here named Calmirasone1, as a novel and potent covalent CaM inhibitor. Calmirasone1 has a 4-fold increased affinity for CaM as compared to OphA and was active against K-Ras in cells within minutes, as compared to hours required by OphA. Calmirasone1 displayed a 2.5-4.5-fold higher selectivity for KRAS over BRAF mutant 3D spheroid growth than OphA, suggesting improved relative on-target activity. Importantly, Calmirasone1 has a 40-260-fold lower unspecific toxic effect on HRAS mutant cells, while it reaches almost 50% of the activity of novel K-RasG12C specific inhibitors in 3D spheroid assays. Our results suggest that Calmirasone1 can serve as a new tool compound to further investigate the cancer cell biology of the K-Ras and CaM associated stemness activities.
  • Schnitzbauer, Andreas A.; Zuelke, Carl; Graeb, Christian; Rochon, Justine; Bilbao, Itxarone; Burra, Patrizia; de Jong, Koert P.; Duvoux, Christophe; Kneteman, Norman M.; Adam, Rene; Bechstein, Wolf O.; Becker, Thomas; Beckebaum, Susanne; Chazouilleres, Olivier; Cillo, Umberto; Colledan, Michele; Faendrich, Fred; Gugenheim, Jean; Hauss, Johann P.; Heise, Michael; Hidalgo, Ernest; Jamieson, Neville; Koenigsrainer, Alfred; Lamby, Philipp E.; Lerut, Jan P.; Mäkisalo, Heikki; Margreiter, Raimund; Mazzaferro, Vincenzo; Mutzbauer, Ingrid; Otto, Gerd; Pageaux, Georges-Philippe; Pinna, Antonio D.; Pirenne, Jacques; Rizell, Magnus; Rossi, Giorgio; Rostaing, Lionel; Roy, Andre; Sanchez Turrion, Victor; Schmidt, Jan; Troisi, Roberto I.; van Hoek, Bart; Valente, Umberto; Wolf, Philippe; Wolters, Heiner; Mirza, Darius F.; Scholz, Tim; Steininger, Rudolf; Soderdahl, Gunnar; Strasser, Simone I.; Jauch, Karl-Walter; Neuhaus, Peter; Schlitt, Hans J.; Geissler, Edward K. (2010)
  • Knuuttila, Matias; Mehmood, Arfa; Huhtaniemi, Riikka; Yatkin, Emrah; Häkkinen, Merja R.; Oksala, Riikka; Laajala, Teemu D.; Ryberg, Henrik; Handelsman, David J.; Aittokallio, Tero; Auriola, Seppo; Ohlsson, Claes; Laiho, Asta; Elo, Laura L.; Sipila, Petra; Makela, Sari I.; Poutanen, Matti (2018)
    The development of castration-resistant prostate cancer (CRPC) is associated with the activation of intratumoral androgen biosynthesis and an increase in androgen receptor (AR) expression. We recently demonstrated that, similarly to the clinical CRPC, orthotopically grown castration-resistant VCaP (CR-VCaP) xenografts express high levels of AR and retain intratumoral androgen concentrations similar to tumors grown in intact mice. Herein, we show that antiandrogen treatment (enzalutamide or ARN-509) significantly reduced (10-fold, P <0.01) intratumoral testosterone and dihydrotestosterone concentrations in the CR-VCaP tumors, indicating that the reduction in intratumoral androgens is a novel mechanism by which antiandrogens mediate their effects in CRPC. Antiandrogen treatment also altered the expression of multiple enzymes potentially involved in steroid metabolism. Identical to clinical CRPC, the expression levels of the full-length AR (twofold, P <0.05) and the AR splice variants 1 (threefold, P <0.05) and 7 (threefold, P <0.01) were further increased in the antiandrogen-treated tumors. Nonsignificant effects were observed in the expression of certain classic androgen-regulated genes, such as TMPRSS2 and KLK3, despite the low levels of testosterone and dihydrotestosterone. However, other genes recently identified to be highly sensitive to androgen-regulated AR action, such as NOV and ST6GalNAc1, were markedly altered, which indicated reduced androgen action. Taken together, the data indicate that, besides blocking AR, antiandrogens modify androgen signaling in CR-VCaP xenografts at multiple levels.
  • Aidala, C.; Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.; PHENIX Collaboration (2017)
    The cross section and transverse single-spin asymmetries of mu(-) and mu(+) from open heavy-flavor decays in polarized p + p collisions at pffisffiffi root s = 200 GeV were measured by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at ffiffiffi root s = 200 GeV, these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity (1.4 <vertical bar y vertical bar <2.0) over the transverse momentum range of 1.25 <p(T) <7 GeV/c for the cross section and 1.25 <p(T) <5 GeV/c for the asymmetry measurements. The obtained cross section is compared to a fixed-order-plus-next-to-leading-log perturbative-quantum-chromodynamics calculation. The asymmetry results are consistent with zero within uncertainties, and a model calculation based on twist-3 three-gluon correlations agrees with the data.
  • Apu, Ehsanul Hoque; Akram, Saad Ullah; Rissanen, Jouni; Wan, Hong; Salo, Tuula (2018)
    Desmoglein 3 (Dsg3) is an adhesion receptor in desmosomes, but its role in carcinoma cell migration and invasion is mostly unknown. Our aim was to quantitatively analyse the motion of Dsg3-modified carcinoma cells in 2D settings and in 3D within tumour microenvironment mimicking (TMEM) matrices. We tested mutant constructs of C-terminally truncated Dsg3 (Delta 238 and Delta 560), overexpressed full-length (FL) Dsg3, and empty vector control (Ct) of buccal mucosa squamous cell carcinoma (SqCC/Y1) cells. We captured live cell images and analysed migration velocities and accumulated and Euclidean distances. We compared rodent collagen and Matrigel. with human Myogel TMEM matrices for these parameters in 3D sandwich, in which we also tested the effects of monoclonal antibody AK23, which targets the EC1 domain of Dsg3. In monolayer culture, FL and both truncated constructs migrated faster and had higher accumulated distances than Ct cells. However, in the 3D assays, only the mutants invaded faster relative to Ct cells. Of the mutants, the shorter form (Delta 238) exhibited faster migration and invasion than Delta 560 cells. In the Transwell, all of the cells invaded faster through Myogel than Matrigel coated wells. In 3D sandwich, AK23 antibody inhibited only the invasion of FL cells. We conclude that different experimental 2D and 3D settings can markedly influence the movement of oral carcinoma cells with various Dsg3 modifications.
  • Bogacheva, Mariia S.; Khan, Sofia; Kanninen, Liisa K.; Yliperttula, Marjo; Leung, Alan W.; Lou, Yan-Ru (2018)
    Definitive endoderm (DE) is the first stage of human pluripotent stem cell (hPSC) differentiation into hepatocyte-like cells. Developing human liver cell models for pharmaceutical applications is highly demanding. Due to the vast number of existing protocols to generate DE cells from hPSCs, we aimed to compare the specificity and efficiency of selected published differentiation conditions. We differentiated two hPSC lines (induced PSC and embryonic stem cell) to DE cells on Matrigel matrix using growth factors (Activin A and Wnt-3a) and small molecules (sodium butyrate and IDE 1) in different combinations. By studying dynamic changes during 6 days in cell morphology and the expression of markers for pluripotency, DE, and other germ layer lineages, we found that Activin A is essential for DE differentiation, while Wnt-3a and sodium butyrate are dispensable. Although sodium butyrate exerted rapid DE differentiation kinetics, it caused massive cell death and could not generate sufficient cells for further differentiation and applications. We further discover that IDE 1 could not induce DE as reported previously. Hereby, we compared different conditions for DE induction and found an effective six day-protocol to obtain DE cells for the further differentiation and applications.
  • Johansson, Niklas G; Turku, Ainoleena; Vidilaseris, Keni; Dreano, Loic; Khattab, Ayman; Ayuso Perez, Daniel; Wilkinson, Aaron; Zhang, Yuezhou; Tamminen, Matti; Grazhdankin, Evgeni; Kiriazis, Alexandros; Fishwick, Colin W. G.; Meri, Seppo; Yli-Kauhaluoma, Jari; Goldman, Adrian; Boije af Gennäs, Gustav; Xhaard, Henri (2020)
    Membrane-bound pyrophosphatases (mPPases) regulate energy homeostasis in pathogenic protozoan parasites and lack human homologues, which makes them promising targets in e.g. malaria. Yet only few nonphosphorus inhibitors have been reported so far. Here, we explore an isoxazole fragment hit, leading to the discovery of small mPPase inhibitors with 6-10 mu M IC50 values in the Thermotoga maritima test system. Promisingly, the compounds retained activity against Plasmodium falciparum mPPase in membranes and inhibited parasite growth.
  • Giri, Anil K.; Aittokallio, Tero (2019)
    DNA methyltransferase inhibitors (DNMTi) decitabine and azacytidine are approved therapies for myelodysplastic syndrome and acute myeloid leukemia, and their combinations with other anticancer agents are being tested as therapeutic options for multiple solid cancers such as colon, ovarian, and lung cancer. However, the current therapeutic challenges of DNMTis include development of resistance, severe side effects and no or partial treatment responses, as observed in more than half of the patients. Therefore, there is a critical need to better understand the mechanisms of action of these drugs. In order to discover molecular targets of DNMTi therapy, we identified 638 novel CpGs with an increased methylation in response to decitabine treatment in HCT116 cell lines and validated the findings in multiple cancer types (e.g., bladder, ovarian, breast, and lymphoma) cell lines, bone marrow mononuclear cells from primary leukemia patients, as well as peripheral blood mononuclear cells and ascites from platinum resistance epithelial ovarian cancer patients. Azacytidine treatment also increased methylation of these CpGs in colon, ovarian, breast, and lymphoma cancer cell lines. Methylation at 166 identified CpGs strongly correlated (vertical bar r vertical bar >= 0.80) with corresponding gene expression in HCT116 cell line. Differences in methylation at some of the identified CpGs and expression changes of the corresponding genes was observed in TCGA colon cancer tissue as compared to adjacent healthy tissue. Our analysis revealed that hypermethylated CpGs are involved in cancer cell proliferation and apoptosis by P53 and olfactory receptor pathways, hence influencing DNMTi responses. In conclusion, we showed hypermethylation of CpGs as a novel mechanism of action for DNMTi agents and identified 638 hypermethylated molecular targets (CpGs) common to decitabine and azacytidine therapy. These novel results suggest that hypermethylation of CpGs should be considered when predicting the DNMTi responses and side effects in cancer patients.
  • Kuusanmäki, Heikki; Dufva, Olli; Parri, Elina; van Adrichem, Arjan J.; Rajala, Hanna; Majumder, Muntasir M.; Yadav, Bhagwan; Parsons, Alun; Chan, Wing C.; Wennerberg, Krister; Mustjoki, Satu; Heckman, Caroline A. (2017)
    Constitutive JAK/STAT3 signaling contributes to disease progression in many lymphoproliferative disorders. Recent genetic analyses have revealed gain-of-function STAT3 mutations in lymphoid cancers leading to hyperactivation of STAT3, which may represent a potential therapeutic target. Using a functional reporter assay, we screened 306 compounds with selective activity against various target molecules to identify drugs capable of inhibiting the cellular activity of STAT3. Top hits were further validated with additional models including STAT3-mutated natural killer (NK)-cell leukemia/lymphoma cell lines and primary large granular lymphocytic (LGL) leukemia cells to assess their ability to inhibit STAT3 phosphorylation and STAT3 dependent cell viability. We identified JAK, mTOR, Hsp90 and CDK inhibitors as potent inhibitors of both WT and mutant STAT3 activity. The Hsp90 inhibitor luminespib was highly effective at reducing the viability of mutant STAT3 NK cell lines and LGL leukemia patient samples. Luminespib decreased the phosphorylation of mutant STAT3 at Y705, whereas JAK1/JAK2 inhibitor ruxolitinib had reduced efficacy on mutant STAT3 phosphorylation. Additionally, combinations involving Hsp90, JAK and mTOR inhibitors were more effective at reducing cell viability than single agents. Our findings show alternative approaches to inhibit STAT3 activity and suggest Hsp90 as a therapeutic target in lymphoproliferative disorders with constitutively active STAT3.
  • Unbiased Biomarkers Prediction Re; Jevnikar, Zala; Östling, Jörgen; Vaarala, Outi (2019)
    Background: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. Objective: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. Methods: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. Results: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1 beta, IL-8, and IL-1 beta. Conclusions: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.
  • Ridolfo, Roxane; Tavakoli, Shirin; Junnuthula, Vijayabhaskarreddy; Williams, David S.; Urtti, Arto; van Hest, Jan C. M. (2021)
    Nanoparticle morphology (size, shape, and composition) and surface chemistry are the determining factors underpinning the efficacy of such materials in therapeutic applications. The size, shape, and surface chemistry of a nanoparticle can strongly influence key properties such as interactions with diverse biological fluids and interfaces and, in turn, impact the delivery of bioactive cargo, modulating therapeutic performance. This is exemplified in ocular drug delivery, where potential therapeutics must navigate complex biological media such as the gel-like vitreal fluid and the retina. Biodegradable block copolymer amphiphiles are a robust tool for the engineering of various types of self-assembled nanoparticles with diverse morphologies ranging from spherical and tubular polymersomes to spherical and worm-like micelles. Here, we explore the effect of morphological features such as shape and surface chemistry upon the interactions of a series of copolymer nanoparticles with retinal (ARPE-19) cells and the release of a low solubility drug (dexamethasone) that is currently used in ocular therapy and study their diffusion in vitreous using ex vivo eyes. We demonstrate that both aspect ratio and surface chemistry of nanoparticles will influence their performance in terms of cell uptake, drug release, and diffusion with high aspect ratio shapes demonstrating enhanced properties in relation to their spherical counterparts.
  • Beaune, Gregory; Lam, Andy Y. W.; Dufour, Sylvie; Winnik, Francoise M.; Brochard-Wyart, Francoise (2017)
    We study the spreading of cell aggregates deposited on adhesive substrates decorated with microparticles (MPs). A cell monolayer expands around the aggregate. The cells on the periphery of the monolayer take up the MPs, clearing the substrate as they progress and forming an aureole of cells filled with MPs. We study the dynamics of spreading and determine the width of the aureole and the level of MP internalization in cells as a function of MP size, composition, and density. From the radius and width of the aureole, we quantify the volume fraction of MPs within the cell, which leads to an easy, fast, and inexpensive measurement of the cell - particle internalization.
  • Legehar, Ashenafi; Xhaard, Henri; Ghemtio, Leo (2016)
    Background: The disposition of a pharmaceutical compound within an organism, i.e. its Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) properties and adverse effects, critically affects late stage failure of drug candidates and has led to the withdrawal of approved drugs. Computational methods are effective approaches to reduce the number of safety issues by analyzing possible links between chemical structures and ADMET or adverse effects, but this is limited by the size, quality, and heterogeneity of the data available from individual sources. Thus, large, clean and integrated databases of approved drug data, associated with fast and efficient predictive tools are desirable early in the drug discovery process. Description: We have built a relational database (IDAAPM) to integrate available approved drug data such as drug approval information, ADMET and adverse effects, chemical structures and molecular descriptors, targets, bioactivity and related references. The database has been coupled with a searchable web interface and modern data analytics platform (KNIME) to allow data access, data transformation, initial analysis and further predictive modeling. Data were extracted from FDA resources and supplemented from other publicly available databases. Currently, the database contains information regarding about 19,226 FDA approval applications for 31,815 products (small molecules and bio-logics) with their approval history, 2505 active ingredients, together with as many ADMET properties, 1629 molecular structures, 2.5 million adverse effects and 36,963 experimental drug-target bioactivity data. Conclusion: IDAAPM is a unique resource that, in a single relational database, provides detailed information on FDA approved drugs including their ADMET properties and adverse effects, the corresponding targets with bioactivity data, coupled with a data analytics platform. It can be used to perform basic to complex drug-target ADMET or adverse effects analysis and predictive modeling. IDAAPM is freely accessible at http://idaapm.helsinki.fi and can be exploited through a KNIME workflow connected to the database.
  • Emameh, Reza Zolfaghari; Kuuslahti, Marianne; Näreaho, Anu; Sukura, Antti; Parkkila, Seppo (2016)
    Trichinellosis is a helminthic infection where different species of Trichinella nematodes are the causative agents. Several molecular assays have been designed to aid diagnostics of trichinellosis. These assays are mostly complex and expensive. The genomes of Trichinella species contain certain parasite-specific genes, which can be detected by polymerase chain reaction (PCR) methods. We selected -carbonic anhydrase (-CA) gene as a target, because it is present in many parasites genomes but absent in vertebrates. We developed a novel -CA gene-based method for detection of Trichinella larvae in biological samples. We first identified a -CA protein sequence from Trichinella spiralis by bioinformatic tools using -CAs from Caenorhabditis elegans and Drosophila melanogaster. Thereafter, 16 sets of designed primers were tested to detect -CA genomic sequences from three species of Trichinella, including T.spiralis, Trichinellapseudospiralis and Trichinellanativa. Among all 16 sets of designed primers, the primer set No. 2 efficiently amplified -CA genomic sequences from T.spiralis, T.pseudospiralis and T.nativa without any false-positive amplicons from other parasite samples including Toxoplasma gondii, Toxocara cati and Parascaris equorum. This robust and straightforward method could be useful for meat inspection in slaughterhouses, quality control by food authorities and medical laboratories.
  • Pavel, Alisa; del Giudice, Giusy; Federico, Antonio; Di Lieto, Antonio; Kinaret, Pia A. S.; Serra, Angela; Greco, Dario (2021)
    The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.
  • Summanen, Milla; Granqvist, Niko; Tuominen, Raimo K.; Yliperttula, Marjo; Verrips, C. Theo; Boonstra, Johannes; Blanchetot, Christophe; Ekokoski, Elina (2012)
  • Peurala, Hanna; Greco, Dario; Heikkinen, Tuomas; Kaur, Sippy; Bartkova, Jirina; Jamshidi, Maral; Aittomäki, Kristiina; Heikkilä, Päivi; Bartek, Jiri; Blomqvist, Carl; Butzow, Ralf; Nevanlinna, Heli (2011)
  • Merisaari, Joni; Denisova, Oxana; Doroszko, Milena; Le Joncour, Vadim; Johansson, Patrik; Leenders, William P. J.; Kastrinsky, David B.; Zaware, Nilesh; Narla, Goutham; Laakkonen, Pirjo; Nelander, Sven; Ohlmeyer, Michael; Westermarck, Jukka (2020)
    Glioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation. Here, we demonstrate that small molecule activators of protein phosphatase 2A, NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood-brain barrier, and in vivo partition to mouse brain tissue after oral dosing. In vitro, small molecule activators of protein phosphatase 2A exhibit robust cell-killing activity against five established glioblastoma cell lines, and nine patient-derived primary glioma cell lines. Collectively, these cell lines have heterogeneous genetic background, kinase inhibitor resistance profile and stemness properties; and they represent different clinical glioblastoma subtypes. Moreover, small molecule activators of protein phosphatase 2A were found to be superior to a range of kinase inhibitors in their capacity to kill patient-derived primary glioma cells. Oral dosing of either of the small molecule activators of protein phosphatase 2A significantly reduced growth of infiltrative intracranial glioblastoma tumours. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested glioblastoma cell lines, also significantly increased survival of mice bearing orthotopic glioblastoma xenografts. In summary, this report presents a proof-of-principle data for blood-brain barrier-permeable tumour suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background. These results also provide the first indications that protein phosphatase 2A reactivation might be able to challenge the current paradigm in glioblastoma therapies which has been strongly focused on targeting specific genetically altered cancer drivers with highly specific inhibitors. Based on demonstrated role for protein phosphatase 2A inhibition in glioblastoma cell drug resistance, small molecule activators of protein phosphatase 2A may prove to be beneficial in future glioblastoma combination therapies.
  • Acheva, Anna; Haghdoost, Siamak; Sollazzo, Alice; Launonen, Virpi; Kämäräinen, Meerit (2019)
    The aim of the study was to investigate the role of a microenvironment in the induction of epithelial-to-mesenchymal transition (EMT) as a sign of early stages of carcinogenesis in human lung epithelial cell lines after protracted low-dose rate gamma-radiation exposures. BEAS-2B and HBEC-3KT lung cell lines were irradiated with low-dose rate gamma-rays (Cs-137, 1.4 or 14 mGy/h) to 0.1 or 1 Gy with or without adding TGF-beta. TGF-beta-treated samples were applied as positive EMT controls and tested in parallel to find out if the radiation has a potentiating effect on the EMT induction. To evaluate the effect of the stromal component, the epithelial cells were irradiated in cocultures with stromal MRC-9 lung fibroblasts. On day 3 post treatment, the EMT markers: alpha-SMA, vimentin, fibronectin, and E-cadherin, were analyzed. The oxidative stress levels were evaluated by 8-oxo-dG analysis in both epithelial and fibroblast cells. The protracted exposure to low Linear Energy Transfer (LET) radiation at the total absorbed dose of 1 Gy was able to induce changes suggestive of EMT. The results show that the presence of the stromal component and its signaling (TGF-beta) in the cocultures enhances the EMT. Radiation had a minor cumulative effect on the TGF-beta-induced EMT with both doses. The oxidative stress levels were higher than the background in both epithelial and stromal cells post chronic irradiation (0.1 and 1 Gy); as for the BEAS-2B cell line, the increase was statistically significant. We suggest that the induction of EMT in bronchial epithelial cells by radiation requires more than single acute exposure and the presence of stromal component might enhance the effect through free radical production and accumulation.
  • Posada, Itziar M. D.; Lectez, Benoit; Sharma, Mukund; Oetken-Lindholm, Christina; Yetukuri, Laxman; Zhou, Yong; Aittokallio, Tero; Abankwa, Daniel (2017)
    Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting. Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor- inhibitors, robustly decrease FKBP12 levels after prolonged (> 2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.