Browsing by Subject "TAU-PROTEIN"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Humaloja, Jaana; Ashton, Nicholas J.; Skrifvars, Markus B. (2022)
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.
  • Garcia, Goncalo; Pinto, Sara; Cunha, Mar; Fernandes, Adelaide; Koistinaho, Jari; Brites, Dora (2021)
    Neuronal miRNA dysregulation may have a role in the pathophysiology of Alzheimer's disease (AD). miRNA(miR)-124 is largely abundant and a critical player in many neuronal functions. However, the lack of models reliably recapitulating AD pathophysiology hampers our understanding of miR-124's role in the disease. Using the classical human SH-SY5Y-APP695 Swedish neuroblastoma cells (SH-SWE) and the PSEN1 mutant iPSC-derived neurons (iNEU-PSEN), we observed a sustained upregulation of miR-124/miR-125b/miR-21, but only miR-124 was consistently shuttled into their exosomes. The miR-124 mimic reduced APP gene expression in both AD models. While miR-124 mimic in SH-SWE neurons led to neurite outgrowth, mitochondria activation and small A beta oligomer reduction, in iNEU-PSEN cells it diminished Tau phosphorylation, whereas miR-124 inhibitor decreased dendritic spine density. In exosomes, cellular transfection with the mimic predominantly downregulated miR-125b/miR-21/miR-146a/miR-155. The miR-124 inhibitor upregulated miR-146a in the two experimental cell models, while it led to distinct miRNA signatures in cells and exosomes. In sum, though miR-124 function may be dependent on the neuronal AD model, data indicate that keeping miR-124 level strictly controlled is crucial for proper neuronal function. Moreover, the iNEU-PSEN cellular model stands out as a useful tool for AD mechanistic studies and perhaps for the development of personalized therapeutic strategies.
  • Svarcbahs, Reinis; Julku, Ulrika; Kilpelainen, Tommi; Kyyrö, Mirva; Jäntti, Maria; Myohänen, Timo T. (2019)
    Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.
  • Eteläinen, T.; Kulmala, Soile; Svarcbahs, R.; Jäntti, M.; Myohänen, T. T. (2021)
    Oxidative stress (OS) is a common toxic feature in various neurodegenerative diseases. Therefore, reducing OS could provide a potential approach to achieve neuroprotection. Prolyl oligopeptidase (PREP) is a serine protease that is linked to neurodegeneration, as endogenous PREP inhibits autophagy and induces the accumulation of detrimental protein aggregates. As such, inhibition of PREP by a small-molecular inhibitor has provided neuroprotection in preclinical models of neurodegenerative diseases. In addition, PREP inhibition has been shown to reduce production of reactive oxygen species (ROS) and the absence of PREP blocks stress-induced ROS production. However, the mechanism behind PREP-related ROS regulation is not known. As we recently discovered PREP's physiological role as a protein phosphatase 2A (PP2A) regulator, we wanted to characterize PREP inhibition as an approach to reduce OS. We studied the impact of a PREP inhibitor, KYP-2047, on hydrogen peroxide and ferrous chloride induced ROS production and on cellular antioxidant response in HEK-293 and SHSY5Y cells. In addition, we used HEK-293 and SH-SY5Y PREP knock-out cells to validate the role of PREP on stress-induced ROS production. We were able to show that absence of PREP almost entirely blocks the stressinduced ROS production in both cell lines. Reduced ROS production and smaller antioxidant response was also seen in both cell lines after PREP inhibition by 10 mu M KYP-2047. Our results also revealed that the OS reducing mechanism of PREP inhibition is related to reduced activation of ROS producing NADPH oxidase through enhanced PP2A activation. In conclusion, our results suggest that PREP inhibition could also provide neuroprotection by reducing OS, thus broadening the scope of its beneficial effects on neurodegeneration.