Browsing by Subject "TEMPERATE BOG"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Korrensalo, Aino; Kettunen, Laura; Laiho, Raija; Alekseychik, Pavel; Vesala, Timo; Mammarella, Ivan; Tuittila, Eeva-Stiina (2018)
    Question: Peatlands are globally important for carbon storage due to the imbalance between plant biomass production and decomposition. Distribution of both live standing biomass (BM, dry mass g/m(2)) and biomass production (BMP, dry mass gm(-2) growing season(-1)) are known to be dependent on the water table (WT). However, the relations of BM and BMP to WT variation are poorly known. Here we investigated, how the above- and below-ground BM and BMP of three different plant functional types (PFTs), dwarf shrubs, sedges and Sphagnum mosses, relate to natural WT variation within an ombrotrophic boreal bog. In addition, we estimated ecosystem-level BMP and compared that with ecosystem net primary production (NPP) derived from eddy covariance (EC) measurements. Location: Siikaneva bog, Ruovesi, Finland. Methods: We quantified above- and below-ground BM and BMP of PFTs along the WT gradient, divided into six plant community types. Plant community scale BM and BMP were up-scaled to the ecosystem level. NPP was derived from EC measurements using a literature-based ratio of heterotrophic respiration to total ecosystem respiration. Results: BM varied from 211 to 979 g/m(2) among the plant community types, decreasing gradually from dry to wet community types. In contrast, BMP was similar between plant community types (162-216 g/m(2)), except on nearly vegetation-free bare peat surfaces where it was low (38 g/m(2)). Vascular plant BM turnover rate (BMP:BM, per year) varied from 0.14 to 0.30 among the plant community types, being highest in sedge-dominated hollows. On average 56% of the vascular BM was produced below ground. Mosses, when present, produced on average 31% of the total BM, ranging from 16% to 53% depending on community type. EC-derived NPP was higher than measured BMP due to underestimation of certain components. Conclusions: We found that the diversity of PFTs decreases the spatial variability in productivity of a boreal bog ecosystem. The observed even distribution of BMP resulted from different WT optima and BMP:BM of dwarf shrubs, sedges and Sphagnum species. These differences in biomass turnover rate and species responses to environmental conditions may provide a resilience mechanism for bog ecosystems in changing conditions.
  • Alekseychik, Pavel; Mammarella, Ivan; Karpov, Dmitry; Dengel, Sigrid; Terentieva, Irina; Sabrekov, Alexander; Glagolev, Mikhail; Lapshina, Elena (2017)
    Very few studies of ecosystem-atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2) and energy budgets in a typical bog of the western Siberian middle taiga based on May-August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pinecovered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to CO2 gCm(-2) for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.
  • Qiu, Chunjing; Zhu, Dan; Ciais, Philippe; Guenet, Bertrand; Krinner, Gerhard; Peng, Shushi; Aurela, Mika; Bernhofer, Christian; Bruemmer, Christian; Bret-Harte, Syndonia; Chu, Housen; Chen, Jiquan; Desai, Ankur R.; Dusek, Jiri; Euskirchen, Eugenie S.; Fortuniak, Krzysztof; Flanagan, Lawrence B.; Friborg, Thomas; Grygoruk, Mateusz; Gogo, Sebastien; Gruenwald, Thomas; Hansen, Birger U.; Holl, David; Humphreys, Elyn; Hurkuck, Miriam; Kiely, Gerard; Klatt, Janina; Kutzbach, Lars; Largeron, Chloe; Laggoun-Defarge, Fatima; Lund, Magnus; Lafleur, Peter M.; Li, Xuefei; Mammarella, Ivan; Merbold, Lutz; Nilsson, Mats B.; Olejnik, Janusz; Ottosson-Lofvenius, Mikaell; Oechel, Walter; Parmentier, Frans-Jan W.; Peichl, Matthias; Pirk, Norbert; Peltola, Olli; Pawlak, Wlodzimierz; Rasse, Daniel; Rinne, Janne; Shaver, Gaius; Schmid, Hans Peter; Sottocornola, Matteo; Steinbrecher, Rainer; Sachs, Torsten; Urbaniak, Marek; Zona, Donatella; Ziemblinska, Klaudia (2018)
    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5 degrees grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (V-cmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r(2) = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r(2) = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r(2) = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r(2) = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r(2) values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r(2) values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r(2) <0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized V-cmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average V-cmax value.