Browsing by Subject "TERRESTRIAL BIOSPHERE"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Holmberg, Maria; Aalto, Tuula; Akujarvi, Anu; Arslan, Ali Nadir; Bergstrom, Irina; Bottcher, Kristin; Lahtinen, Ismo; Makela, Annikki; Markkanen, Tiina; Minunno, Francesco; Peltoniemi, Mikko; Rankinen, Katri; Vihervaara, Petteri; Forsius, Martin (2019)
    Forests regulate climate, as carbon, water and nutrient fluxes are modified by physiological processes of vegetation and soil. Forests also provide renewable raw material, food, and recreational possibilities. Rapid climate warming projected for the boreal zone may change the provision of these ecosystem services. We demonstrate model based estimates of present and future ecosystem services related to carbon cycling of boreal forests. The services were derived from biophysical variables calculated by two dynamic models. Future changes in the biophysical variables were driven by climate change scenarios obtained as results of a sample of global climate models downscaled for Finland, assuming three future pathways of radiative forcing. We introduce continuous monitoring on phenology to be used in model parametrization through a webcam network with automated image processing features. In our analysis, climate change impacts on key boreal forest ecosystem services are both beneficial and detrimental. Our results indicate an increase in annual forest growth of about 60% and an increase in annual carbon sink of roughly 40% from the reference period (1981-2010) to the end of the century. The vegetation active period was projected to start about 3 weeks earlier and end ten days later by the end of the century compared to currently. We found a risk for increasing drought, and a decrease in the number of soil frost days. Our results show a considerable uncertainty in future provision of boreal forest ecosystem services.
  • Li, Junyu; Wu, Guoxi; Guo, Qingxue; Korpelainen, Helena; Li, Chunyang (2018)
    There are significant differences in the morphological and physiological responses of larch species with contrasting growth rates under fertilization. However, little is known about species-specific differences in responses to nutrient imbalance caused by fertilization. Therefore, in this study, the effects of nitrogen (N) and phosphorus (P) fertilization on the morphological, physiological and chloroplast ultrastructural traits of two contrasting larch species, fast-growing Larix kaempferi and slowly-growing L. olgensis, grown in larch plantation soil, were investigated during two growth seasons. It was shown that N and combined N and P (NP) fertilization increased plant photosynthesis, foliar N contents, chlorophyll contents, and dry mass accumulation and partitioning in aboveground organs in both larch species. Although P fertilization enhanced P accumulation, its presence reduced the N content in soluble proteins in the foliage of both larch species. Yet, P fertilization exhibited some differences in the two species: P fertilization increased photosynthesis, chlorophyll content and biomass accumulation of L. olgensis, while it decreased these parameters dramatically in L. kaempfert P fertilization increased foliar N content in L. olgensis, while it reduced it in L. kaempferi. P fertilized L. kaempferi had more damaged chloroplast ultrastructure than L. olgensis. In addition, L. kaempferi exhibited lower acid phosphatase activities, and higher photosynthesis and biomass accumulation than L. olgensis, except under P fertilization. L. kaempferi allocated more biomass into needles, except under P fertilization, while L. olgensis allocated more into stems under fertilization. In conclusion, it was shown that nutrient imbalance caused by P fertilization has greater negative effects on a fast-growing species than on a slowly-growing one, and the negative effects are related to differences in acclimation strategies, N partitioning to photosynthetic components, and P transportation and metabolism in the foliage.
  • Purkamo, Lotta; Bomberg, Malin; Kietavainen, Riikka; Salavirta, Heikki; Nyyssonen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itavaara, Merja (2016)
    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300aEuro-m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.
  • Mäkela, Jarmo; Knauer, Juergen; Aurela, Mika; Black, Andrew; Heimann, Martin; Kobayashi, Hideki; Lohila, Annalea; Mammarella, Ivan; Margolis, Hank; Markkanen, Tiina; Susiluoto, Jouni; Thum, Tea; Viskari, Toni; Zaehle, Soenke; Aalto, Tuula (2019)
    We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal values were estimated by a simple stochastic optimisation algorithm. The model was constrained with in situ observations of evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation. The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This modification enabled the model to correctly reproduce the springtime increase in GPP for all conifer sites used in this study. Overall, the calibration and model modifications improved the coefficient of determination and the model bias for GPP with all stomatal conductance formulations. However, only the coefficient of determination was clearly improved for ET. The optimisation resulted in best performance by the Bethy, Ball-Berry, and the Friend and Kiang stomatal conductance models. We also optimised the model during a drought event at a Finnish Scots pine forest site. This optimisation improved the model behaviour but resulted in significant changes to the parameter values except for the unified stomatal optimisation model (USO). Interestingly, the USO demonstrated the best performance during this event.
  • Musavi, Talie; Migliavacca, Mirco; van de Weg, Martine Janet; Kattge, Jens; Wohlfahrt, Georg; van Bodegom, Peter M.; Reichstein, Markus; Bahn, Michael; Carrara, Arnaud; Domingues, Tomas F.; Gavazzi, Michael; Gianelle, Damiano; Gimeno, Cristina; Granier, Andre; Gruening, Carsten; Havrankova, Katerina; Herbst, Mathias; Hrynkiw, Charmaine; Kalhori, Aram; Kaminski, Thomas; Klumpp, Katja; Kolari, Pasi; Longdoz, Bernard; Minerbi, Stefano; Montagnani, Leonardo; Moors, Eddy; Oechel, Walter C.; Reich, Peter B.; Rohatyn, Shani; Rossi, Alessandra; Rotenberg, Eyal; Varlagin, Andrej; Wilkinson, Matthew; Wirth, Christian; Mahecha, Miguel D. (2016)
    The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site-years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R-2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra-and interspecific trait variation on ecosystem functioning.
  • Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula (2017)
    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiala (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist mainly due to the lack of the limiting effect of increased VPD on stomatal conductance during the low soil moisture condition. Our study provides a deeper understanding of the coupling of carbon and water cycles in the boreal Scots pine forest ecosystem and suggests possible improvements to land surface models, which play an important role in the prediction of biosphere-atmosphere feedbacks in the climate system.
  • Collalti, A.; Marconi, S.; Ibrom, A.; Trotta, C.; Anav, A.; D'Andrea, E.; Matteucci, G.; Montagnani, L.; Gielen, B.; Mammarella, I.; Gruenwald, T.; Knohl, A.; Berninger, F.; Zhao, Y.; Valentini, R.; Santini, M. (2016)
    This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest Ecosystem Model (FEM) in simulating gross primary productivity (GPP), against eddy covariance GPP data for 10 FLUXNET forest sites across Europe. A new carbon allocation module, coupled with new both phenological and autotrophic respiration schemes, was implemented in this new daily version. Model ability in reproducing timing and magnitude of daily and monthly GPP fluctuations is validated at intra-annual and inter-annual scale, including extreme anomalous seasons. With the purpose to test the 3D-CMCC FEM applicability over Europe without a site-related calibration, the model has been deliberately parametrized with a single set of species-specific parametrizations for each forest ecosystem. The model consistently reproduces both in timing and in magnitude daily and monthly GPP variability across all sites, with the exception of the two Mediterranean sites. We find that 3D-CMCC FEM tends to better simulate the timing of inter-annual anomalies than their magnitude within measurements' uncertainty. In six of eight sites where data are available, the model well reproduces the 2003 summer drought event. Finally, for three sites we evaluate whether a more accurate representation of forest structural characteristics (i.e. cohorts, forest layers) and species composition can improve model results. In two of the three sites results reveal that model slightly increases its performances although, statistically speaking, not in a relevant way.