Browsing by Subject "TILLAGE"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Pakarinen, Aku; Fritze, Hannu; Timonen, Sari; Kivijarvi, Pirjo; Velmala, Sannakajsa (2021)
    Arbuscular mycorrhizal fungi (AMF) enhance plant phosphorus uptake, increase soil water holding abilities, reduce soil erosion and can protect their hosts from soil-borne pathogens. Hence, AMF play an important part in improving sustainable agricultural practices, and information about the effects of different preceding crop species on the following crop's AMF well-being is crucial for designing crop rotations. We studied onion root and soil microbial diversity and onion root AMF colonization rates after being preceded by three AMF hosting and one non-hosting green manure crop species in a boreal climate organic field. One-season cultivation of different preceding green manure crops did not have a strong effect on AMF colonization or microbial diversity in onion roots nor in the surrounding soil. Onions had high AMF colonization and microbial diversity after all four preceding crops. The overall fungal and bacterial populations of the soil reacted more strongly to seasonal variations than preceding crops. The study suggests that one season is a too short time to influence the AMF community in boreal climate organic fields with conventional tillage. Thus, non-host preceding crops can also be used in rotations, especially together with AMF host crops.
  • Manninen, Noora Johanna; Soinne, Helena Susanna; Lemola, Riitta; Hoikkala, Laura Kristiina; Turtola, Eila (2018)
    Dissolved organic carbon (DOC) load in discharges from cultivated soils may have negative impacts on surface waters. The magnitude of the load may vary according to soil properties or agricultural management practices. This study quantifies the DOC load of cultivated mineral soils and investigates whether the load is affected by agricultural practices. Discharge volumes and concentrations of DOC and dissolved organic nitrogen (DON) were continually measured at three sites from surface runoff and artificial subsurface drainage or from combined total discharge over a two-year period (2012-2014). Two experimental sites in South-West Finland had clayey soils (with soil carbon contents of 2.7-5.9% in the topmost soil layer), and the third site in West-Central Finland had sandy soil (soil carbon contents of 4.3-6.2%). Permanent grassland, organic manure application, mineral fertilization, and conventional ploughing or no-till activities were studied. Furthermore, the biodegradable DOC pool of surface runoff and subsurface drainage water from no-till and ploughed fields was estimated in a 2-month incubation experiment with natural bacterial communities collected from the Baltic Sea seawater. The annual DOC and DON loads were affected by discharge volume and seasonal weather conditions. The loads varied between 25-52 kg ha(-1) and 0.8-3.2 kg ha(-1), respectively, and were comparable to those from boreal forests with similar soil types. The DOC load increased with increasing topsoil carbon content at all sites. There were slightly higher DOC concentrations and DOC load from permanent grassland, but otherwise we could not distinguish any clear management-induced differences in the total DOC loads. While only 6-17% of the DOC in discharge water was biologically degraded during the 2-month incubation, the proportion of biodegradable (labile) DOC in surface runoff appeared to increase when soil was ploughed compared to no-till. (c) 2017 Elsevier B.V. All rights reserved.
  • Hautsalo, Juho; Jauhiainen, Lauri; Hannukkala, Asko; Manninen, Outi; Vetelainen, Merja; Pietila, Leena; Peltoniemi, Kirsi; Jalli, Marja (2020)
    Fusarium head blight (FHB) and the mycotoxins produced by its causal agents in oats (Avena sativaL.) have become a growing problem in northern countries over the last decades. The development of resistant cultivars would offer a highly needed and economical solution to the problem. To tackle the high genotypexenvironment interaction of FHB, a combined analysis was carried out on eight greenhouse and 13 field experiments inoculated with DON-producingFusariumspecies. Our data included 406 oat genotypes consisting of Nordic cultivars, breeding lines and potentially resistant gene bank accessions. High variation in the DON accumulation estimates in the material shows that the selection of genotypes with better resistance would be valuable. The greenhouse and field studies resulted in significantly different oat genotype susceptibility rankings for both DON andFusariuminfected kernels. The results obtained from the field experiments have more practical relevance for farmers and breeders for the identification of DON resistant cultivars than greenhouse screenings. Days to maturity and the plant height of the genotypes both significantly affected theFusariuminfections and DON in the field. The relationship betweenFusariuminfected kernels, DONand germination capacity provide an insight into the composition of genotypes with resistance. The core set of 30 oat genotypes, which were phenotyped in several experiments, provides valuable examples of both highly susceptible and moderately resistant oat genotypes.
  • Li, Jichen; Hernandez-Ramirez, Guillermo; Kiani, Mina; Quideau, Sylvie; Smith, Elwin G.; Janzen, Henry; Larney, Francis J.; Puurveen, Dick (2018)
    Soil organic matter (SOM) is a major driver of key agroecosystem functions. Our objective was to examine the dynamics of organic matter in whole soil, particulate (POM; > 53 mu m size), and mineral-associated (MAOM) fractions under varying crop rotations and nutrient managements at two long-term experimental sites (Breton and Lethbridge). Soil samples were collected from simple (2 yr) and complex (5 or 6 yr) crop rotations at the 5 - 10 cm depth. We found associations between SOM pools versus microbial community and soil aggregation. Compared to cropped soils, an adjacent forest exhibited a significantly higher soil total organic carbon (TOC) and a shift in SOM fractions with substantially higher POM. However, the forest soil had the lowest microbial biomass C among all the assessed land use systems (P <0 .05), suggesting that other factors than the amount of labile SOM (i.e., POM-C) were controlling the microbial community. When contrasted to simple 2 yr rotations, the complex rotations including perennials and legumes significantly raised TOC and soil total nitrogen as well as the stable SOM fraction (i.e., MAOM-C and -N)consistently for both Breton and Lethbridge sites. Our findings highlight that varying land managements have profound feedbacks on soil quality as mediated by alterations in long-term SOM dynamics.
  • Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann (2016)
    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.
  • Dianatmanesh, Marziye; Kazemeini, Seyed A.; Bahrani, Mohammad J.; Shakeri, Ehsan; Alinia, Mozhgan; Amjad, Syeda F.; Mansoora, Nida; Poczai, Peter; Lalarukh, Irfana; Abbas, Mohamed H. H.; Abdelhafez, Ahmed A.; Hamed, Mahdy H. (2022)
    Incorporation of crop residues into agricultural system has become a worldwide efficient practice for enhancing crop production. The main objectives of this experiment was to investigate the major role of incorporating wheat (Triticum aestivum L.) residues and nitrogen (N) fertilizers rates under different water requirements (WR) on growth, seed yield and yield components of common bean (Phaseolus vulgaris L.). The results showed that seed yield under 80% WR in retained crop residue plots was & SIM;11% higher than WR treatment with no residue incorporation. Seed yield was not significantly different between residue retention and removal treatments in 2016, whereas it was higher (12% and 17%) under residue retained plots compared to removed ones in subsequent years. Seed yields responded to N up to 170 and 225 kg ha(-1) in removed and retained residue treatments, respectively in 2017 and 2018. Annual increment of seed yield in residue retained plots (36%) was 2.11 times higher than the residue removed ones (17%). There was higher soil N content in 50% residue retention with 225 kg N ha(-1) under both water deficit treatments in all years. The highest soil organic carbon (SOC) was achieved with normal irrigation in retained residue plots with 225 kg N ha(-1) in all years. Overall, wheat residue incorporation into the soil and N-supply substantially contributed to counteracting yield declines of common bean under water deficit conditions.& nbsp;(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).