Browsing by Subject "TMS"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Tervo, Aino E.; Metsomaa, Johanna; Nieminen, Jaakko O.; Sarvas, Jukka; Ilmoniemi, Risto J. (2020)
    Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and orientation of the coil or peak stimulating electric field to elicit motor responses in a target muscle. This target search is laborious, and the result is user-dependent. Here, we present a closed-loop search method that utilizes automatic electronic adjustment of the stimulation based on the previous responses. The electronic adjustment is achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the principles of Bayesian optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on five healthy volunteers and further offline simulations showed that our adaptively guided search method needs only a relatively small number of stimuli to provide outcomes with good accuracy and precision. The automated method enables fast and user-independent optimization of stimulation parameters in research and clinical applications of TMS.
  • Tervo, Aino E.; Nieminen, Jaakko O.; Lioumis, Pantelis; Metsomaa, Johanna; Souza, Victor H.; Sinisalo, Heikki; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J. (2022)
    Background: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of various brain dysfunctions. However, the optimal way to target stimulation and administer TMS therapies, for example, where and in which electric field direction the stimuli should be given, is yet to be determined. Objective: To develop an automated closed-loop system for adjusting TMS parameters (in this work, the stimulus orientation) online based on TMS-evoked brain activity measured with electroencephalography (EEG). Methods: We developed an automated closed-loop TMS-EEG set-up. In this set-up, the stimulus parameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an algorithm that automatically optimizes the stimulation orientation based on single-trial EEG responses. We applied the algorithm to determine the electric field orientation that maximizes the amplitude of the TMS-EEG responses. The validation of the algorithm was performed with six healthy volunteers, repeating the search twenty times for each subject. Results: The validation demonstrated that the closed-loop control worked as desired despite the large variation in the single-trial EEG responses. We were often able to get close to the orientation that maximizes the EEG amplitude with only a few tens of pulses. Conclusion: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables effective coupling to brain activity. (C) 2022 The Author(s). Published by Elsevier Inc.
  • Koponen, Lari M.; Nieminen, Jaakko O.; Mutanen, Tuomas P.; Stenroos, Matti; Ilmoniemi, Risto J. (2017)
    Background: Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. Objective: To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. Methods: We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. Results: We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. Conclusion: The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. (C) 2017 Elsevier Inc. All rights reserved.
  • Rodionov, Andrei; Savolainen, Sarianna; Kirveskari, Erika; Mäkelä, Jyrki P.; Shulga, Anastasia (2020)
    Recovery of lower-limb function after spinal cord injury (SCI) is dependent on the extent of remaining neural transmission in the corticospinal pathway. The aim of this proof-of-concept pilot study was to explore the effects of long-term paired associative stimulation (PAS) on leg muscle strength and walking in people with SCI. Five individuals with traumatic incomplete chronic tetraplegia (>34 months post-injury, motor incomplete, 3 females, mean age 60 years) with no contraindications to transcranial magnetic stimulation (TMS) received PAS to one or both legs for 2 months (28 sessions in total, 5 times a week for the first 2 weeks and 3 times a week thereafter). The participants were evaluated with the Manual Muscle Test (MMT), AIS motor and sensory examination, Modified Asworth Scale (MAS), and the Spinal Cord Independence Measure (SCIM) prior to the intervention, after 1 and 2 months of PAS, and after a 1-month follow-up. The study was registered at (NCT03459885). During the intervention, MMT scores and AIS motor scores increased significantly (p = 0.014 and p = 0.033, respectively). Improvements were stable in follow-up. AIS sensory scores, MAS, and SCIM were not modified significantly. MMT score prior to intervention was a good predictor of changes in walking speed (Radj2 = 0.962). The results of this proof-of-concept pilot study justify a larger trial on the effect of long-term PAS on leg muscle strength and walking in people with chronic incomplete SCI.
  • Holi, Matti M.; Eronen, Markku; Toivonen, Kari; Toivonen, Päivi; Marttunen, Mauri; Naukkarinen, Hannu (2004)
    In a double-blind, controlled study, we examined the therapeutic effects of high-frequency left prefrontal repetitive transcranial magnetic stimulation (rTMS) on schizophrenia symptoms. A total of 22 chronic hospitalized schizophrenia patients were randomly assigned to 2 weeks (10 sessions) of real or sham rTMS. rTMS was given with the following parameters: 20 trains of 5-second 10-Hz stimulation at 100 percent motor threshold, 30 seconds apart. Effects on positive and negative symptoms, self-reported symptoms, rough neuropsychological functioning, and hormones were assessed. Although there was a significant improvement in both groups in most of the symptom measures, no real differences were found between the groups. A decrease of more than 20 percent in the total PANSS score was found in 7 control subjects but only 1 subject from the real rTMS group. There was no change in hormone levels or neuropsychological functioning, measured by the MMSE, in either group. Left prefrontal rTMS (with the used parameters) seems to produce a significant nonspecific effect of the treatment procedure but no therapeutic effect in the most chronic and severely ill schizophrenia patients.
  • Pitkanen, Minna; ShogoYazawa; Airaksinen, Katja; Lioumis, Pantelis; Nurminen, Jussi; Pekkonen, Eero; Makela, Jyrki P. (2019)
    The mapping of the sensorimotor cortex gives information about the cortical motor and sensory functions. Typical mapping methods are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG). The differences between these mapping methods are, however, not fully known. TMS center of gravities (CoGs), MEG somatosensory evoked fields (SEFs), corticomuscular coherence (CMC), and corticokinematic coherence (CKC) were mapped in ten healthy adults. TMS mapping was performed for first dorsal interosseous (FDI) and extensor carpi radialis (ECR) muscles. SEFs were induced by tactile stimulation of the index finger. CMC and CKC were determined as the coherence between MEG signals and the electromyography or accelerometer signals, respectively, during voluntary muscle activity. CMC was mapped during the activation of FDI and ECR muscles separately, whereas CKC was measured during the waving of the index finger at a rate of 3-4 Hz. The maximum CMC was found at beta frequency range, whereas maximum CKC was found at the movement frequency. The mean Euclidean distances between different localizations were within 20 mm. The smallest distance was found between TMS FDI and TMS ECR CoGs and longest between CMC FDI and CMC ECR sites. TMS-inferred localizations (CoGs) were less variable across participants than MEG-inferred localizations (CMC, CKC). On average, SEF locations were 8 mm lateral to the TMS CoGs (p <0.01). No differences between hemispheres were found. Based on the results, TMS appears to be more viable than MEG in locating motor cortical areas.
  • Nieminen, Jaakko O.; Sinisalo, Heikki; Souza, Victor H.; Malmi, Mikko; Yuryev, Mikhail; Tervo, Aino E.; Stenroos, Matti; Milardovich, Diego; Korhonen, Juuso T.; Koponen, Lari M.; Ilmoniemi, Risto J. (2022)
    Background: Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. Objective: To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. Methods: We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. Results: The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. Conclusion: The developed mTMS system enables electronically targeted brain stimulation within a cortical region. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  • Koponen, Lari M.; Nieminen, Jaakko O.; Ilmoniemi, Risto J. (2018)
    Background: Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method: a magnetic field pulse from a TMS coil can excite neurons in a desired location of the cortex. Conventional TMS coils cause focal stimulation underneath the coil centre; to change the location of the stimulated spot, the coil must be moved over the new target. This physical movement is inherently slow, which limits, for example, feedback-controlled stimulation. Objective: To overcome the limitations of physical TMS-coil movement by introducing electronic targeting. Methods: We propose electronic stimulation targeting using a set of large overlapping coils and introduce a matrix-factorisation-based method to design such sets of coils. We built one such device and demonstrated the electronic stimulation targeting in vivo. Results: The demonstrated two-coil transducer allows translating the stimulated spot along a 30-mmlong line segment in the cortex; with five coils, a target can be selected from within a region of the cortex and stimulated in any direction. Thus, far fewer coils are required by our approach than by previously suggested ones, none of which have resulted in practical devices. Conclusion: Already with two coils, we can adjust the location of the induced electric field maximum along one dimension, which is sufficient to study, for example, the primary motor cortex. (C) 2018 The Author(s). Published by Elsevier Inc.
  • Gogulski, Juha; Zetter, Rasmus; Nyrhinen, Mikko; Pertovaara, Antti; Carlson, Synnove (2017)
    The human prefrontal cortex (PFC) has been shown to be important for metacognition, the capacity to monitor and control one's own cognitive processes. Here we dissected the neural architecture of somatosensory metacognition using navigated single-pulse transcranial magnetic stimulation (TMS) to modulate tactile working memory (WM) processing. We asked subjects to perform tactile WM tasks and to give a confidence rating for their performance after each trial. We circumvented the challenge of interindividual variability in functional brain anatomy by applying TMS to two PFC areas that, according to tractography, were neurally connected with the primary somatosensory cortex (S1): one area in the superior frontal gyrus (SFG), another in the middle frontal gyrus (MFG). These two PFC locations and a control cortical area were stimulated during both spatial and temporal tactile WM tasks. We found that tractography-guided TMS of the SFG area selectively enhanced metacognitive accuracy of tactile temporal, but not spatial WM. Stimulation of the MFG area that was also neurally connected with the S1 had no such effect on metacognitive accuracy of either the temporal or spatial tactile WM. Our findings provide causal evidence that the PFC contains distinct neuroanatomical substrates for introspective accuracy of tactile WM.
  • Tolmacheva, Aleksandra; Savolainen, Sarianna; Kirveskari, Erika; Brandstack, Nina; Mäkelä, Jyrki P.; Shulga, Anastasia (2019)
    Objectives Long-term paired associative stimulation (PAS) is a non-invasive combination of transcranial magnetic stimulation and peripheral nerve stimulation and leads to improved hand motor function in individuals with incomplete traumatic tetraplegia. Spinal cord injuries (SCIs) can also be induced by neurological diseases. We tested a similar long-term PAS approach in patients with nontraumatic neurological SCI. Methods In this case series five patients with nontraumatic tetraplegia received PAS to the weaker upper limb 3 to 5 times per week for 6 weeks. Patients were evaluated with manual muscle testing (MMT) before and immediately after therapy and at the 1- and 6-month follow ups. Patients were also evaluated for spasticity, hand mechanical and digital dynamometry, pinch, and Box and Blocks tests. Results All patients had improved MMT values at all post-PAS evaluations. The mean±standard error MMT increase was 1.44±0.37 points (p=0.043) immediately after PAS, 1.57±0.4 points (p=0.043) at the 1-month follow-up, and 1.71±0.47 points (p=0.043) at the 6-month follow up. The pinch, digital dynamometry values, and Box and Blocks test results also improved in all patients. Conclusions Long-term PAS may be a safe and effective treatment for improving hand function in patients with nontraumatic tetraplegia. Significance This is the first report demonstrating the therapeutic potential of PAS for neurological SCI.
  • Saad, Elyana; Wojciechowska, Maria; Silvanto, Juha (2015)
    Visual short-term memory (VSTM) and visual imagery are believed to involve overlapping neuronal representations in the early visual cortex. While a number of studies have provided evidence for this overlap, at the behavioral level VSTM and imagery are dissociable processes; this begs the question of how their neuronal mechanisms differ. Here we used transcranial magnetic stimulation (TMS) to examine whether the neural bases of imagery and VSTM maintenance are dissociable in the early visual cortex (EVC). We intentionally used a similar task for VSTM and imagery in order to equate their assessment. We hypothesized that any differential effect of TMS on VSTM and imagery would indicate that their neuronal bases differ at the level of EVC. In the "alone" condition, participants were asked to engage either in VSTM or imagery, whereas in the "concurrent" condition, each trial required both VSTM maintenance and imagery simultaneously. A dissociation between VSTM and imagery was observed for reaction times: TMS slowed down responses for VSTM but not for imagery. The impact of TMS on sensitivity did not differ between VSTM and imagery, but did depend on whether the tasks were carried concurrently or alone. This study shows that neural processes associated with VSTM and imagery in the early visual cortex can be partially dissociated. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).