Browsing by Subject "TNF-ALPHA"

Sort by: Order: Results:

Now showing items 1-20 of 20
  • Clubb, James H. A.; Kudling, Tatiana V.; Heinioe, Camilla; Basnet, Saru; Pakola, Santeri; Cervera Carrascon, Victor; Santos, Joao Manuel; Quixabeira, Dafne C. A.; Havunen, Riikka; Sorsa, Suvi; Zheng, Vincent; Salo, Tuula; Bäck, Leif; Aro, Katri; Tulokas, Sanni; Loimu, Venla; Hemminki, Akseli (2022)
    Immune checkpoint inhibitors (ICI) have provided significant improvement in clinical outcomes for some patients with solid tumors. However, for patients with head and neck cancer, the response rate to ICI monotherapy remains low, leading to the exploration of combinatorial treatment strategies. In this preclinical study, we use an oncolytic adenovirus (Ad5/3) encoding hTNF alpha and hIL-2 and non-replicate adenoviruses (Ad5) encoding mTNF alpha and mIL-2 with ICI to achieve superior tumor growth control and improved survival outcomes. The in vitro effect of Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 was characterized through analyses of virus replication, transgene expression and lytic activity using head and neck cancer patient derived cell lines. Mouse models of ICI naive and refractory oral cavity squamous cell carcinoma were established to evaluate the local and systemic anti-tumor immune response upon ICI treatment with or without the non-replicative adenovirus encoding mTNF alpha and mIL-2. We delineated the mechanism of action by measuring the metabolic activity and effector function of CD3(+) tumor infiltrating lymphocytes (TIL) and transcriptomic profile of the CD45(+) tumor immune compartment. Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 demonstrated robust replicative capability in vitro across all head and neck cell lines screened through potent lytic activity, E1a and transgene expression. In vivo, in both ICI naive and refractory models, we observed improvement to tumor growth control and long-term survival when combining anti-PD-1 or anti-PD-L1 with the non-replicative adenovirus encoding mTNF alpha and mIL-2 compared to monotherapies. This observation was verified by striking CD3(+) TIL derived mGranzyme b and interferon gamma production complemented by increased T cell bioenergetics. Notably, interrogation of the tumor immune transcriptome revealed the upregulation of a gene signature distinctive of tertiary lymphoid structure formation upon treatment of murine anti-PD-L1 refractory tumors with non-replicative adenovirus encoding mTNF alpha and mIL-2. In addition, we detected an increase in anti-tumor antibody production and expansion of the memory T cell compartment in the secondary lymphoid organs. In summary, a non-replicative adenovirus encoding mTNF alpha and mIL-2 potentiates ICI therapy, demonstrated by improved tumor growth control and survival in head and neck tumor-bearing mice. Moreover, the data reveals a potential approach for inducing tertiary lymphoid structure formation. Altogether our results support the clinical potential of combining this adenovirotherapy with anti-PD-1 or anti-PD-L1.
  • Lindfors, S; Polianskyte-Prause, Z; Bouslama, R; Lehtonen, E; Mannerla, M; Nisen, H; Tienari, J; Salmenkari, H; Forsgard, R; Mirtti, T; Lehto, M; Groop, PH; Lehtonen, S (2021)
    Aims/hypothesis Chronic low-grade inflammation with local upregulation of proinflammatory molecules plays a role in the progression of obesity-related renal injury. Reduced serum concentration of anti-inflammatory adiponectin may promote chronic inflammation. Here, we investigated the potential anti-inflammatory and renoprotective effects and mechanisms of action of AdipoRon, an adiponectin receptor agonist. Methods Wild-type DBA/2J mice were fed with high-fat diet (HFD) supplemented or not with AdipoRon to model obesity-induced metabolic endotoxaemia and chronic low-grade inflammation and we assessed changes in the glomerular morphology and expression of proinflammatory markers. We also treated human glomeruli ex vivo and human podocytes in vitro with AdipoRon and bacterial lipopolysaccharide (LPS), an endotoxin upregulated in obesity and diabetes, and analysed the secretion of inflammatory cytokines, activation of inflammatory signal transduction pathways, apoptosis and migration. Results In HFD-fed mice, AdipoRon attenuated renal inflammation, as demonstrated by reduced expression of glomerular activated NF-kappa B p65 subunit (NF-kappa B-p65) (70%, p < 0.001), TNF alpha (48%, p < 0.01), IL-1 beta (51%, p < 0.001) and TGF beta (46%, p < 0.001), renal IL-6 and IL-4 (21% and 20%, p < 0.05), and lowered glomerular F4/80-positive macrophage infiltration (31%, p < 0.001). In addition, AdipoRon ameliorated HFD-induced glomerular hypertrophy (12%, p < 0.001), fibronectin accumulation (50%, p < 0.01) and podocyte loss (12%, p < 0.001), and reduced podocyte foot process effacement (15%, p < 0.001) and thickening of the glomerular basement membrane (18%, p < 0.001). In cultured podocytes, AdipoRon attenuated the LPS-induced activation of the central inflammatory signalling pathways NF-kappa B-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) (30%, 36% and 22%, respectively, p < 0.001), reduced the secretion of TNF alpha (32%, p < 0.01), and protected against podocyte apoptosis and migration. In human glomeruli ex vivo, AdipoRon reduced the LPS-induced secretion of inflammatory cytokines IL-1 beta, IL-18, IL-6 and IL-10. Conclusions/interpretation AdipoRon attenuated the renal expression of proinflammatory cytokines in HFD-fed mice and LPS-stimulated human glomeruli, which apparently contributed to the amelioration of glomerular inflammation and injury. Mechanistically, based on assays on cultured podocytes, AdipoRon reduced LPS-induced activation of the NF-kappa B-p65, JNK and p38-MAPK pathways, thereby impelling the decrease in apoptosis, migration and secretion of TNF alpha. We conclude that the activation of the adiponectin receptor by AdipoRon is a potent strategy to attenuate endotoxaemia-associated renal inflammation.
  • Duy Nguyen, Su; Maaninka, Katariina; Lappalainen, Jani; Nurmi, Katariina; Metso, Jari; Oorni, Katariina; Navab, Mohamad; Fogelman, Alan M.; Jauhiainen, Matti; Lee-Rueckert, Miriam; Kovanen, Petri T. (2016)
    Objective Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. Approach and Results Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor--activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-B-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-, interleukin-1, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. Conclusions The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.
  • Kouri, Vesa-Petteri; Olkkonen, Juri; Kaivosoja, Emilia; Ainola, Mari-Mia; Juhila, Juuso; Hovatta, Iiris; Konttinen, Yrjo T.; Mandelin, Jami (2013)
  • Olkkonen, Juri; Kouri, Vesa-Petteri; Hynninen, Joel; Konttinen, Yrjo T.; Mandelin, Jami (2015)
    Objective Patients with rheumatoid arthritis (RA) have altered circadian rhythm of circulating serum cortisol, melatonin and IL-6, as well as disturbance in the expression of clock genes ARNTL2 and NPAS2. In humans, TNF alpha increases the expression ARNTL2 and NPAS2 but paradoxically suppresses clock output genes DPB and PER3. Our objective was to investigate the expression of direct clock suppressors DEC1 and DEC2 (BHLHE 40 and 41 proteins) in response to TNF alpha and investigate their role during inflammation. Methods Cultured primary fibroblasts were stimulated with TNF alpha. Effects on DEC2 were studied using RT-qPCR and immunofluorescence staining. The role of NF-kappa B in DEC2 increase was analyzed using IKK-2 specific inhibitor IMD-0354. Cloned DEC2 was transfected into HEK293 cells to study its effects on gene expression. Transfections into primary human fibroblasts were used to confirm the results. The presence of DEC2 was analyzed in (RA) and osteoarthritis (OA) synovial membranes by immunohistochemistry. Results TNF alpha increased DEC2 mRNA and DEC2 was mainly detected at nuclei after the stimulus. The effects of TNF alpha on DEC2 expression were mediated via NF-kappa B. Overexpression, siRNA and promoter activity studies disclosed that DEC2 directly regulates IL-1 beta, in both HEK293 cells and primary human fibroblasts. DEC2 was increased in synovial membrane in RA compared to OA. Conclusion Not only ARNTL2 and NPAS2 but also DEC2 is regulated by TNF alpha in human fibroblasts. NF-kappa B mediates the effect on DEC2, which upregulates IL-1 beta. Circadian clock has a direct effect on inflammation in human fibroblasts.
  • Lagus, Heli; Klaas, Mariliis; Juteau, Susanna; Elomaa, Outi; Kere, Juha; Vuola, Jyrki; Jaks, Viljar; Kankuri, Esko (2019)
    Because molecular memories of past inflammatory events can persist in epidermal cells, we evaluated the long-term epidermal protein expression landscapes after dermal regeneration and in psoriatic inflammation. We first characterized the effects of two dermal regeneration strategies on transplants of indicator split-thickness skin grafts (STSGs) in ten adult patients with deep burns covering more than 20% of their body surface area. After fascial excision, three adjacent areas within the wound were randomized to receive a permanent dermal matrix, a temporary granulation-tissue-inducing dressing or no dermal component as control. Control areas were covered with STSG immediately, and treated areas after two-weeks of dermis formation. Epidermis-dermis-targeted proteomics of one-year-follow-up samples were performed for protein expression profiling. Epidermal expression of axonemal dynein heavy chain 10 (DNAH10) was increased 20-fold in samples having had regenerating dermis vs control. Given the dermal inflammatory component found in our dermal regeneration samples as well as in early psoriatic lesions, we hypothesized that DNAH10 protein expression also would be affected in psoriatic skin samples. We discovered increased DNAH10 expression in inflammatory lesions when compared to unaffected skin. Our results associate DNAH10 expression with cell proliferation and inflammation as well as with the epidermal memory resulting from the previous regenerative signals of dermis. This study (ISRCTN14499986) was funded by the Finnish Ministry of Defense and by government subsidies for medical research.
  • Kylmä, Anna Kaisa; Tolvanen, Tuomas Aleksi; Carpén, Timo; Haglund, Caj; Mäkitie, Antti; Mattila, Petri S.; Grenman, Reidar; Jouhi, Lauri; Sorsa, Timo; Lehtonen, Sanna; Hagström, Jaana (2020)
    In oropharyngeal squamous cell carcinoma (OPSCC), the expression pattern of toll-like receptors (TLRs), in comparison between human papillomavirus (HPV)-positive and -negative tumors differs. TLRs control innate immune responses by activating, among others, the nuclear factor-κΒ (NF-κΒ) signaling pathway. Elevated NF-κΒ activity is detectable in several cancers and regulates cancer development and progression. We studied TLR5 expression in 143 unselected consecutive OPSCC tumors, and its relation to HPV-DNA and p16 status, clinicopathological parameters, and patient outcome, and studied TLR5 stimulation and consecutive NF-κB cascade activation in vitro in two human OPSCC cell lines and immortalized human keratinocytes (HaCat). Clinicopathological data came from hospital registries, and TLR5 immunoexpression was evaluated by immunohistochemistry. Flagellin served to stimulate TLR5 in cultured cells, followed by analysis of the activity of the NF-κB signaling cascade with In-Cell Western for IκΒ and p-IκΒ. High TLR5 expression was associated with poor disease-specific survival in HPV-positive OPSCC, which typically shows low TLR5 immunoexpression. High TLR5 immunoexpression was more common in HPV-negative OPSCC, known for its less-favorable prognosis. In vitro, we detected NF-κΒ cascade activation in the HPV-positive OPSCC cell line and in HaCat cells, but not in the HPV-negative OPSCC cell line. Our results suggest that elevated TLR5 immunoexpression may be related to reduced NF-κΒ activity in HPV-negative OPSCC. The possible prognosis-worsening mechanisms among these high-risk OPSCC patients however, require further evaluation.
  • Auvinen, Piritta; Mäntyselkä, Pekka; Koponen, Hannu; Kautiainen, Hannu; Korniloff, Katariina; Ahonen, Tiina; Vanhala, Mauno (2018)
    Background: Restless legs syndrome is a sensorimotor disorder associated with several mental illnesses particularly depression. Methods: A cross-sectional study of primary care patients. The prevalence of restless legs symptoms was studied in 706 patients with depressive symptoms and 426 controls without a psychiatric diagnosis by using a structured questionnaire. The depressive symptoms were evaluated with the BDI and the psychiatric diagnosis was confirmed by means of a diagnostic interview (M.I.N.I.). The subjects with elevated depressive symptoms were divided into two groups subjects with depressive symptoms with and without clinical depression. Results: The prevalence of restless legs symptoms was 24.8% in the controls, 50.0% in the patients with clinical depression and 42.4% in the patients with depressive symptoms. CRP value was significantly higher (p =.003) in the clinically depressed patients than in the other groups. There was a higher concentration of TNF-alpha in the subjects with restless legs symptoms (7.4 ng/l +/- 3.2) compared with the subjects without symptoms (6.7 ng/1 +/- 2.3)(p Conclusions: TNF-alpha level was associated with restless legs symptoms only among subjects with depressive symptoms whether they had clinical depression or not. We suggest that TNF-alpha could be an underlying factor between restless legs symptoms and comorbidities.
  • Peuhkuri, Katri; Vapaatalo, Heikki; Korpela, Riitta (2011)
  • Malbon, Alexandra J.; Fonfara, Sonja; Meli, Marina L.; Hahn, Shelley; Egberink, Herman; Kipar, Anja (2019)
    Feline infectious peritonitis (FIP) is a fatal immune-mediated disease of cats, induced by feline coronavirus (FCoV). A combination of as yet poorly understood host and viral factors combine to cause a minority of FCoV-infected cats to develop FIP. Clinicopathological features include fever, vasculitis, and serositis, with or without effusions; all of which indicate a pro-inflammatory state with cytokine release. As a result, primary immune organs, as well as circulating leukocytes, have thus far been of most interest in previous studies to determine the likely sources of these cytokines. Results have suggested that these tissues alone may not be sufficient to induce the observed inflammation. The current study therefore focussed on the liver and heart, organs with a demonstrated ability to produce cytokines and therefore with huge potential to exacerbate inflammatory processes. The IL-12:IL-10 ratio, a marker of the immune system's inflammatory balance, was skewed towards the pro-inflammatory IL-12 in the liver of cats with FIP. Both organs were found to upregulate mRNA expression of the inflammatory triad of cytokines IL-1 beta, IL-6, and TNF-alpha in FIP. This amplifying step may be one of the missing links in the pathogenesis of this enigmatic disease.
  • Hellquist, Anna; Zucchelli, Marco; Lindgren, Cecilia M.; Saarialho-Kere, Ulpu; Järvinen, Tiina; Koskenmies, Sari; Julkunen, Heikki; Onkamo, Päivi; Skoog, Tiina; Panelius, Jaana; Räisänen-Sokolowski, Anne; Hasan, Taina; Widen, Elisabeth; Gunnarson, Iva; Svenungsson, Elisabet; Padyukov, Leonid; Assadi, Ghazaleh; Berglind, Linda; Mäkelä, Ville-Veikko; Kivinen, Katja; Wong, Andrew; Graham, Deborah S. Cunningham; Vyse, Timothy J.; D'Amato, Mauro; Kere, Juha (2009)
  • Lisboa, S. F.; Issy, A. C.; Biojone, C.; Montezuma, K.; Fattori, V.; Del-Bel, E. A.; Guimaraes, F. S.; Cunha, F. Q.; Verri, W. A.; Joca, S. R. L. (2018)
    Preclinical and clinical evidence suggests pro-inflammatory cytokines might play an important role in the neurobiology of schizophrenia and stress-related psychiatric disorders. Interleukin-18 (IL-18) is a member of the IL-1 family of cytokines and it is widely expressed in brain regions involved in emotional regulation. Since IL-18 involvement in the neurobiology of mental illnesses, including schizophrenia, remains unknown, this work aimed at investigating the behavior of IL-18 null mice (KO) in different preclinical models: 1. the prepulse inhibition test (PPI), which provides an operational measure of sensorimotor gating and schizophrenic-like phenotypes; 2. amphetamine-induced hyperlocomotion, a model predictive of antipsychotic activity; 3. resident intruder test, a model predictive of aggressive behavior. Furthermore, the animals were submitted to models used to assess depressive- and anxiety-like behavior. IL-18KO mice showed impaired baseline PPI response, which was attenuated by D-amphetamine at a dose that did not modify PPI response in wild-type (WT) mice, suggesting a hypodopaminergic prefrontal cortex function in those mice. D-Amphetamine, however, induced hyperlocomotion in IL-18KO mice compared to their WT counterparts, suggesting hyperdopaminergic activity in the midbrain. Moreover, IL-18KO mice presented increased basal levels of IL-1 beta levels in the hippocampus and TNF-alpha in the prefrontal cortex, suggesting an overcompensation of IL-18 absence by increased levels of other proinflammatory cytokines. Although no alteration was observed in the forced swimming or in the elevated plus maze tests in naive IL-18KO mice, these mice presented anxiogenic-like behavior after exposure to repeated forced swimming stress. In conclusion, deletion of the IL-18 gene resembled features similar to symptoms observed in schizophrenia (positive and cognitive symptoms, aggressive behavior), in addition to increased susceptibility to stress. The IL-18KO model, therefore, could provide new insights into how changes in brain immunological homeostasis induce behavioral changes related to psychiatric disorders, such as schizophrenia.
  • Rodriguez, Alfredo; Zhang, Kaiyang; Färkkilä, Anniina; Filiatrault, Jessica; Yang, Chunyu; Velazquez, Martha; Furutani, Elissa; Goldman, Devorah C.; Garcia de Teresa, Benilde; Garza-Mayen, Gilda; McQueen, Kelsey; Sambel, Larissa A.; Molina, Bertha; Torres, Leda; Gonzalez, Marisol; Vadillo, Eduardo; Pelayo, Rosana; Fleming, William H.; Grompe, Markus; Shimamura, Akiko; Hautaniemi, Sampsa; Greenberger, Joel; Frias, Sara; Parmar, Kalindi; D'Andrea, Alan D. (2021)
    Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-beta pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.
  • Havunen, Riikka; Siurala, Mikko; Sorsa, Suvi; Gronberg-Vaha-Koskela, Susanna; Behr, Michael; Tähtinen, Siri; Santos, Joao Manuel; Karell, Pauliina; Rusanen, Juuso; Nettelbeck, Dirk M.; Ehrhardt, Anja; Kanerva, Anna; Hemminki, Akseli (2017)
    Adoptive cell therapy holds much promise in the treatment of cancer but results in solid tumors have been modest. The notable exception is tumor-infiltrating lymphocyte (TIL) therapy of melanoma, but this approach only works with high-dose preconditioning chemotherapy and systemic interleukin (IL)-2 postconditioning, both of which are associated with toxicities. To improve and broaden the applicability of adoptive cell transfer, we constructed oncolytic adenoviruses coding for human IL-2 (hIL2), tumor necrosis factor alpha (TNF-alpha), or both. The viruses showed potent antitumor efficacy against human tumors in immunocompromised severe combined immunodeficiency (SCID) mice. In immunocompetent Syrian hamsters, we combined the viruses with TIL transfer and were able to cure 100% of the animals. Cured animals were protected against tumor re-challenge, indicating a memory response. Arming with IL-2 and TNF-alpha increased the frequency of both CD4(+) and CD8(+) TILs in vivo and augmented splenocyte proliferation ex vivo, suggesting that the cytokines were important for T cell persistence and proliferation. Cytokine expression was limited to tumors and treatment-related signs of systemic toxicity were absent, suggesting safety. To conclude, cytokine-armed oncolytic adenoviruses enhanced adoptive cell therapy by favorable alteration of the tumor microenvironment. A clinical trial is in progress to study the utility of Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123) in human patients with cancer.
  • Lin, Jizhen; Hafren, Lena; Kerschner, Joseph; Li, Jian-Dong; Brown, Steve; Zheng, Qing Y.; Preciado, Diego; Nakamura, Yoshihisa; Huang, Qiuhong; Zhang, Yan (2017)
    Objective. The objective is to perform a comprehensive review of the literature up to 2015 on the genetics and precision medicine relevant to otitis media. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels were formed comprising experts in the genetics and precision medicine of otitis media. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The entire panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 and discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. Conclusion. Many genes relevant to otitis media have been identified in the last 4 years in advancing our knowledge regarding the predisposition of the middle ear mucosa to commensals and pathogens. Advances include mutant animal models and clinical studies. Many signaling pathways are involved in the predisposition of otitis media. Implications for Practice. New knowledge on the genetic background relevant to otitis media forms a basis of novel potential interventions, including potential new ways to treat otitis media.
  • Salmenkari, Hanne; Korpela, Riitta; Vapaatalo, Heikki (2021)
    Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract, which manifest in recurring gastrointestinal inflammation. The current treatment options of IBD are not curative and are lacking in aspects like prevention of fibrosis. New treatment options are needed to fulfil the unmet needs and provide alternatives to drugs with resistances and side effects. Drugs targeting the renin-angiotensin system (RAS), besides being antihypertensive, also possess anti-inflammatory and antifibrotic properties and could offer an inexpensive alternative to control inflammation and fibrosis in the gut. RAS inhibitors have been effective in preventing and alleviating colitis in preclinical studies, but available human data are still sparse. This review outlines the pathophysiological functions of RAS in the gut and summarizes preclinical studies utilizing pharmacological RAS inhibitors in the treatment of experimental colitis. We discuss the alterations in intestinal RAS and the available evidence of the benefits of RAS inhibitors for IBD patients. Retrospective studies comparing IBD patients using ACE inhibitors or angiotensin II receptor blockers have provided optimistic results regarding a milder disease course and fewer hospitalizations and corticosteroid use in patients using RAS inhibitors. Prospective studies are needed to evaluate the effectiveness of these promising medications in the treatment of IBD.
  • Nadjar, Agnes; Wigren, Henna-Kaisa M.; Tremblay, Marie-Eve (2017)
    Sleep serves crucial learning and memory functions in both nervous and immune systems. Microglia are brain immune cells that actively maintain health through their crucial physiological roles exerted across the lifespan, including phagocytosis of cellular debris and orchestration of neuroinflammation. The past decade has witnessed an explosive growth of microglial research. Considering the recent developments in the field of microglia and sleep, we examine their possible impact on various pathological conditions associated with a gain, disruption, or loss of sleep in this focused mini-review. While there are extensive studies of microglial implication in a variety of neuropsychiatric and neurodegenerative diseases, less is known regarding their roles in sleep disorders. It is timely to stimulate new research in this emergent and rapidly growing field of investigation.
  • Varendi, Kärt; Airavaara, Mikko; Anttila, Jenni; Vose, Sarah; Planken, Anu; Saarma, Mart; Mitchell, James R.; Andressoo, Jaan-Olle (2014)
  • Hepojoki, Jussi; Vaheri, Antti; Strandin, Tomas (2014)
  • Nadella, Rasajna; Voutilainen, Merja H.; Saarma, Mart; Gonzalez-Barrios, Juan A.; Leon-Chavez, Bertha A.; Dueas Jimnez, Judith M.; Dueas Jimnez, Sergio H.; Escobedo, Lourdes; Martinez-Fong, Daniel (2014)
    BACKGROUND: The anti-inflammatory effect of the cerebral dopamine neurotrophic factor (CDNF) was shown recently in primary glial cell cultures, yet such effect remains unknown both in vivo and in 6-hydroxydopamine (6-OHDA) models of Parkinson's disease (PD). We addressed this issue by performing an intranigral transfection of the human CDNF (hCDNF) gene in the critical period of inflammation after a single intrastriatal 6-OHDA injection in the rat. METHODS: At day 15 after lesion, the plasmids p3xNBRE-hCDNF or p3xNBRE-EGFP, coding for enhanced green florescent protein (EGFP), were transfected into the rat substantia nigra (SN) using neurotensin (NTS)-polyplex. At day 15 post-transfection, we measured nitrite and lipoperoxide levels in the SN. We used ELISA to quantify the levels of TNF-α, IL-1β, IL-6, endogenous rat CDNF (rCDNF) and hCDNF. We also used qRT-PCR to measure rCDNF and hCDNF transcripts, and immunofluorescence assays to evaluate iNOS, CDNF and glial cells (microglia, astrocytes and Neuron/Glial type 2 (NG2) cells). Intact SNs were additional controls. RESULTS: In the SN, 6-OHDA triggered nitrosative stress, increased inflammatory cytokines levels, and activated the multipotent progenitor NG2 cells, which convert into astrocytes to produce rCDNF. In comparison with the hemiparkinsonian rats that were transfected with the EGFP gene or without transfection, 6-OHDA treatment and p3xNBRE-hCDNF transfection increased the conversion of NG2 cells into astrocytes resulting in 4-fold increase in the rCDNF protein levels. The overexpressed CDNF reduced nitrosative stress, glial markers and IL-6 levels in the SN, but not TNF-α and IL-1β levels. CONCLUSION: Our results show the anti-inflammatory effect of CDNF in a 6-OHDA rat of Parkinson's disease. Our results also suggest the possible participation of TNF-α, IL-1β and IL-6 in rCDNF production by astrocytes, supporting their anti-inflammatory role.