Browsing by Subject "TOMOGRAPHY"

Sort by: Order: Results:

Now showing items 1-13 of 13
  • Farnebo, Lovisa; Laurell, Goran; Makitie, Antti (2016)
    Conclusion: The management of Head and Neck Cancer of Unknown Primary (HNCUP) patients varies both between centres within and also between the Nordic countries. This study contributes to a continuing discussion of how to improve the accuracy of diagnosis and quality of treatment of HNCUP patients.Objectives: The initiative for this study was based on the lack of common guidelines for diagnostic procedures and for treatment of HNCUP patients in the Nordic countries constituting a region having a rather homogeneous population.Method: A structured questionnaire was sent to all university hospitals in the five Nordic countries.Results: Four of the five Nordic countries use either national guidelines or specific protocols when handling HNCUP. The main diagnostic tools are PET-CT, fine needle aspiration, endoscopic evaluation with biopsies, and most often bilateral tonsillectomy. At 21 of 22 university hospitals the treatment decision is made at a multidisciplinary conference. Three of seven Swedish centres use only radiotherapy or chemoradiotherapy to treat N+ HNCUP patients. Robotic surgery for biopsy of the tongue base is beginning to become an alternative to targeted biopsies in Sweden and Finland. Narrow Band Imaging is used only in Finland.
  • Purisha, Zenith; Karhula, Sakari S.; Ketola, Juuso H.; Rimpeläinen, Juho; Nieminen, Miika T.; Saarakkala, Simo; Kröger, Heikki; Siltanen, Samuli (2019)
    X-ray tomography is a reliable tool for determining the inner structure of 3-D object with penetrating X-rays. However, traditional reconstruction methods, such as Feldkamp-Davis-Kress (FDK), require dense angular sampling in the data acquisition phase leading to long measurement times, especially in X-ray micro-tomography to obtain high-resolution scans. Acquiring less data using greater angular steps is an obvious way for speeding up the process and avoiding the need to save huge data sets. However, computing 3-D reconstruction from such a sparsely sampled data set is difficult because the measurement data are usually contaminated by errors, and linear measurement models do not contain sufficient information to solve the problem in practice. An automatic regularization method is proposed for robust reconstruction, based on enforcing sparsity in the 3-D shearlet transform domain. The inputs of the algorithm are the projection data and a priori known expected degree of sparsity, denoted as 0 <C-pr
  • Skrifvars, Markus B.; French, Craig; Bailey, Michael; Presneill, Jeffrey; Nichol, Alistair; Little, Lorraine; Durantea, Jacques; Huet, Olivier; Haddad, Samir; Arabi, Yaseen; McArthur, Colin; Cooper, D. James; Bellomo, Rinaldo; EPO-TBI Investigators & ANZICS (2018)
    The EPO-TBI study randomized 606 patients with moderate or severe traumatic brain injury (TBI) to be treated with weekly epoetin alfa (EPO) or placebo. Six month mortality was lower in EPO treated patients in an analysis adjusting for TBI severity. Knowledge of possible differential effects by TBI injury subtype and acute neurosurgical treatment as well as timing and cause of death (COD) will facilitate the design of future interventional TBI trials. We defined COD as cerebral (brain death, cerebral death with withdrawal, or death during maximal care) and non-cerebral (death following withdrawal or during maximal care, which had a non-cerebral cause). The study included 305 patients treated with EPO and 297 treated with placebo, with COD recorded in 77 (99%) out of 78 non-survivors. Median time to death in patients dying of cerebral COD was 8 days (interquartile range [IQR] 5-16) compared with 29 days (IQR 7-56) (p = 0.01) for non-cerebral COD. When assessing subgroups by admission CT scan injury findings, we found no significant differential effects of EPO compared with placebo. However, EPO appeared more effective in patients with an injury type not requiring a neurosurgical operation prior to intensive care unit (ICU) admission (odds ratio [OR] 0.29, 95% confidence interval [CI] 0.14-0.61, p = 0.001, p for interaction = 0.003) and in this subgroup, fewer patients died of cerebral causes in the EPO than in the placebo group (5% compared with 14%, p = 0.03). In conclusion, most TBI deaths were from cerebral causes that occurred during the first 2 weeks, and were related to withdrawal of care. EPO appeared to specifically reduce cerebral deaths in the important subgroup of patients with a diffuse type of injury not requiring a neurosurgical intervention prior to randomization.
  • Helin, T.; Lassas, M.; Oksanen, L.; Saksala, T. (2018)
    Passive imaging refers to problems where waves generated by unknown sources are recorded and used to image the medium through which they travel. The sources are typically modelled as a random variable and it is assumed that some statistical information is available. In this paper we study the stochastic wave equation partial derivative(2)(t)u- Delta(g)u = chi W, where W is a random variable with the white noise statistics on R1+n, n >= 3, chi is a smooth function vanishing for negative times and outside a compact set in space, and Delta(g) is the Laplace Beltrami operator associated to a smooth non-trapping Riemannian metric tensor g on R-n. The metric tensor g models the medium to be imaged, and we assume that it coincides with the Euclidean metric outside a compact set. We consider the empirical correlations on an open set chi subset of R-n, C-T(t(1), x(1), t(2), x(2)) = 1/T integral(T)(0) u(t(1) s, x(1))u(t(2) s, x(2))ds, t(1), t(2) > 0, x(1), x(2) is an element of chi, for T > 0. Supposing that chi is non-zero on chi and constant in time after t > 1, we show that in the limit T -> infinity, the data C-T becomes statistically stable, that is, independent of the realization of W. Our main result is that, with probability one, this limit determines the Riemannian manifold (R-n, g) up to an isometry. (C) 2018 Elsevier Masson SAS. All rights reserved.
  • Majala, Susanna; Vesterinen, Tiina; Seppänen, Hanna; Mustonen, Harri; Sundström, Jari; Schalin-Jäntti, Camilla; Gullichsen, Risto; Schildt, Jukka; Kemppainen, Jukka; Arola, Johanna; Kauhanen, Saila (2022)
    Purpose: The aim of this study was to correlate immunohistochemical (IHC) tissue levels of SSTR1-5 with the receptor density generated from [68Ga]Ga-DOTANOC uptake in a prospective series of NF-PNENs. Methods: Twenty-one patients with a total of thirty-five NF-PNEN-lesions and twenty-one histologically confirmed lymph node metastases (LN+) were included in this prospective study. Twenty patients were operated on, and one underwent endoscopic ultrasonography and core-needle biopsy. PET/CT with both [68Ga]Ga-DOTANOC and [18F]F-FDG was performed on all patients. All histological samples were re-classified and IHC-stained with monoclonal SSTR1-5 antibodies and Ki-67 and correlated with [68Ga]Ga-DOTANOC and [18F]F-FDG PET/CT. Results: Expression of SSTR1-5 was detected in 74%, 91%, 80%, 14%, and 77% of NF-PNENs. There was a concordance of SSTR2 IHC with positive/negative [68Ga]Ga-DOTANOC finding (Spearman’s rho 0.382, p = 0.043). All [68Ga]Ga-DOTANOC-avid tumors expressed SSTR2 or SSTR3 or SSTR5. Expression of SSTR5 was higher in tumors with a low Ki-67 proliferation index (PI) (−0.353, 95% CI −0.654–0.039, p = 0.038). The mean Ki-67 PI for SSTR5 positive tumors was 2.44 (SD 2.56, CI 1.0–3.0) and 6.38 (SD 7.25, CI 2.25–8.75) for negative tumors. Conclusion: SSTR2 was the only SSTR subtype to correlate with [68Ga]Ga-DOTANOC PET/CT. Our prospective study confirms SSTR2 to be of the highest impact for SST PET/CT signal.
  • Salonius, Eve; Rieppo, Lassi; Nissi, Mikko J.; Pulkkinen, Hertta J.; Brommer, Harold; Bruenott, Anne; Silvast, Tuomo S.; Van Weeren, P. Rene; Muhonen, Virpi; Brama, Pieter A. J.; Kiviranta, Ilkka (2019)
    Aim: The horse joint, due to its similarity with the human joint, is the ultimate model for translational articular cartilage repair studies. This study was designed to determine the critical size of cartilage defects in the equine carpus and serve as a benchmark for the evaluation of new cartilage treatment options. Material and Methods: Circular full-thickness cartilage defects with a diameter of 2, 4, and 8 mm were created in the left middle carpal joint and similar osteochondral (3.5 mm in depth) defects in the right middle carpal joint of 5 horses. Spontaneously formed repair tissue was examined macroscopically, with MR and mu CT imaging, polarized light microscopy, standard histology, and immunohistochemistry at 12 months. Results: Filling of 2 mm chondral defects was good (77.8 +/- 8.5%), but proteoglycan depletion was evident in Safranin-O staining and gadolinium-enhanced MRI (T-1Gd). Larger chondral defects showed poor filling (50.6 +/- 2.7% in 4 mm and 31.9 +/- 7.3% in 8 mm defects). Lesion filling in 2, 4, and 8 mm osteochondral defects was 82.3 +/- 3.0%, 68.0 +/- 4.6% and 70.8 +/- 15.4%, respectively. Type II collagen staining was seen in 9/15 osteochondral defects but only in 1/15 chondral defects. Subchondral bone pathologies were evident in 14/15 osteochondral samples but only in 5/15 chondral samples. Although osteochondral lesions showed better neotissue quality than chondral lesions, the overall repair was deemed unsatisfactory because of the subchondral bone pathologies. Conclusion: We recommend classifying 4 mm as critical osteochondral lesion size and 2 mm as critical chondral lesion size for cartilage repair research in the equine carpal joint model.
  • Bexelius, Tobias; Sohlberg, Antti (2018)
    Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing. Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies. The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 x 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included. GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.
  • Shcherbakova, Daria M.; Stepanenko, Olesya V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V. (2018)
    Since mammalian tissue is relatively transparent to near-infrared (NIR) light, NIR fluorescentproteins(FPs) engineeredfrombacterialphytochromeshave become widely used probes for non-invasive in vivo imaging. Recently, these genetically encoded NIR probes have been substantially improved, enabling imaging experiments that were not possible previously. Here, we discuss the use of monomeric NIR FPs and NIR biosensors for multiplexed imaging with common visible GFP-based probes and blue light-activatable optogenetic tools. These NIR probes are suitable for visualization of functional activities from molecular to organismal levels. In combination with advanced imaging techniques, such as two-photon microscopy with adaptive optics, photoacoustic tomography and its recent modification reversibly switchable photoacoustic computed tomography, NIR probes allow subcellular resolution at millimeter depths.
  • Lassas, Matti; Oksanen, Lauri; Stefanov, Plamen; Uhlmann, Gunther (2018)
    We consider how microlocal methods developed for tomographic problems can be used to detect singularities of the Lorentzian metric of the Universe using measurements of the Cosmic Microwave Background radiation. The physical model we study is mathematically rigorous but highly idealized.
  • Liu, Wei; Shcherbakova, Daria M.; Kurupassery, Neel; Li, Yang; Zhou, Qifa; Verkhusha, Vladislav V.; Yao, Junjie (2018)
    A conventional photoacoustic microscopy (PAM) system typically has to make tradeoffs between its spatial resolution and penetration depth, by choosing a fixed configuration of optical excitation and acoustic detection. The single-scale imaging capability of PAM may limit its applications in biomedical studies. Here, we report a quad-mode photoacoustic microscopy (QM-PAM) system with four complementary spatial resolutions and maximum penetration depths. For this we first developed a ring-shaped focused ultrasound transducer that has two independent elements with respective central frequencies at 20 MHz and 40 MHz, providing complementary acoustically-determined spatial resolutions and penetration depths. To accommodate the dual-element ultrasound transducer, we implemented two optical excitation modes to provide tightly-and weakly-focused light illumination. The dual-element acoustic detection combined with the two optical focusing modes can thus provide four imaging scales in a single imaging device, with consistent contrast mechanisms and co-registered field of views. We have demonstrated the multiscale morphological, functional, and molecular imaging capability of QM-PAM in the mouse head, leg and ear in vivo. We expect the high scale flexibility of QM-PAM will enable broad applications in preclinical studies.
  • Ahvenainen, Patrik; Dixon, Patrick G.; Kallonen, Aki; Suhonen, Heikki; Gibson, Lorna J.; Svedstrom, Kirsi (2017)
    Background : Biological materials have a complex, hierarchical structure, with vital structural features present at all size scales, from the nanoscale to the macroscale. A method that can connect information at multiple length scales has great potential to reveal novel information. This article presents one such method with an application to the bamboo culm wall. Moso (Phyllostachys edulis) bamboo is a commercially important bamboo species. At the cellular level, bamboo culm wall consists of vascular bundles embedded in a parenchyma cell tissue matrix. The microfibril angle (MFA) in the bamboo cell wall is related to its macroscopic longitudinal stiffness and strength and can be determined at the nanoscale with wide-angle X-ray scattering (WAXS). Combining WAXS with X-ray microtomography (XMT) allows tissue-specific study of the bamboo culm without invasive chemical treatment. Results : The scattering contribution of the fiber and parenchyma cells were separated with spatially-localized WAXS. The fiber component was dominated by a high degree of orientation corresponding to small MFAs (mean MFA 11 degrees). The parenchyma component showed significantly lower degree of orientation with a maximum at larger angles (mean MFA 65 degrees). The fiber ratio, the volume of cell wall in the fibers relative to the overall volume of cell wall, was determined by fitting the scattering intensities with these two components. The fiber ratio was also determined from the XMT data and similar fiber ratios were obtained from the two methods, one connected to the cellular level and one to the nanoscale. X-ray diffraction tomography was also done to study the differences in microfibril orientation between fibers and the parenchyma and further connect the microscale to the nanoscale. Conclusions : The spatially-localized WAXS yields biologically relevant, tissue-specific information. With the custommade bench-top set-up presented, diffraction contrast information can be obtained from plant tissue (1) from regions-of-interest, (2) as a function of distance (line scan), or (3) with two-dimensional or three-dimensional tomography. This nanoscale information is connected to the cellular level features.
  • Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; DAFNE FINLAND Working Grp; Heikkinen, Pekka; Komminaho, Kari (2017)
    Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the presentday seismicity of the Suasselka postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittila gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.
  • Pyötsiä, Krista; Lehtinen, Valtteri; Toivari, Miika; Puolakkainen, Tero; Wilson, Michael Lowery; Snäll, Johanna (2021)
    Purpose: Our study purpose was to clarify the extent of isolated unilateral orbital blowout fracture in relation to surgical treatment and other factors behind the treatment decision. The specific aim was to determine which computer-aided measurements based on radiological images associate with treatment choice. Methods: A retrospective cohort study was implemented on patients with an isolated unilateral orbital blowout fracture. Computer-aided measurement of fracture extent was performed. The study variables included treatment as primary outcome (surgical vs nonsurgical), post-traumatic orbital volume difference (mL) compared to contralateral orbit, fracture area (mm(2)), fracture depth (mm) as predictor variables, and age, sex, injury mechanism, side and site of orbital fracture and positions of recti muscles as explanatory variables. Postoperative outcomes were reported. Logistic regression analysis was used to determine the risk factors for surgery. The statistical significance level was set at P < .05. Results: Of 293 patients, 28.0% received surgical and 72.0% nonsurgical treatment. Volume difference, fracture area and fracture depth predicted surgical outcome (P < .001). In adjusted univariate regression analyses, fractures with moderate and severe displacement of recti muscles were more likely to receive surgical treatment than fractures with mild or no displacement (OR 6.15 and 30.75, respectively, P < .001). Isolated medial wall fractures were significantly less often (OR 0.05, P = .006) and patients with older age (OR 0.97, P = .013) slightly less often treated with surgery. Patients with preoperative symptoms had more often persisting postoperative symptoms than patients without preoperative symptoms. Conclusions: Positions of the recti muscles are an independent radiological factor guiding orbital blowout fracture treatment decision. The bony fracture extent is a combination of volume difference, fracture area and fracture depth which are strongly correlated to each other. A computer-aided method significantly facilitates the systematic evaluation of bone fragments, and the extent of orbital fractures. (C) 2021 The Author. Published by Elsevier Inc. on behalf of The American Association of Oral and Maxillofacial Surgeons.