Browsing by Subject "TRACE-ELEMENT COMPOSITION"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Luttinen, Arto V. (2018)
    In the Karoo large igneous province, the geochemical assessment of mantle source variability and structure is hampered by probable crustal contamination overprinting of compositionally diverse flood basalts. Mantle source characteristics have been defined only for exceptional, primitive rock types. Here I use a compiled dataset for over 800 samples to demonstrate that the abundance of Nb relative to Zr, Ti, and Y provides a useful geochemical tracer of mantle sources for variably contaminated rock types of the Karoo province. Variations in the relative abundance of Nb reveal emplacement of distinctive, Nb-undepleted and Nb-depleted magmas in the North Karoo and South Karoo sub-provinces, respectively, and clarify correlation between flood basalts and previously proposed mantle source components. Judging from plate tectonic reconstructions and the compositions of plausible mantle source components, the geochemical bilateral asymmetry in Karoo may reflect tapping of contrasting plume and upper mantle reservoirs in the two sub-provinces.
  • Heinonen, Jussi S.; Luttinen, Arto V.; Spera, Frank J.; Bohrson, Wendy A. (2019)
    Karoo continental flood basalt (CFB) province is known for its highly variable trace element and isotopic composition, often attributed to the involvement of continental lithospheric sources. Here, we report oxygen isotopic compositions measured with secondary ion mass spectrometry for hand-picked olivine phenocrysts from similar to 190 to 180 Ma CFBs and intrusive rocks from Vestfjella, western Dronning Maud Land, that form an Antarctic extension of the Karoo province. The Vestfjella lavas exhibit heterogeneous trace element and radiogenic isotope compositions (e.g., epsilon(Nd) from -16 to +2 at 180 Ma) and the involvement of continental lithospheric mantle and/or crust in their petrogenesis has previously been suggested. Importantly, our sample set also includes rare primitive dikes that have been derived from depleted asthenospheric mantle sources (epsilon(Nd) up to + 8 at 180 Ma). The majority of the oxygen isotopic compositions of the olivines from these dike rocks (delta O-18 = 4.4-5.2%; Fo = 78-92 mol%) are also compatible with such sources. The olivine phenocrysts in the lavas, however, are characterized by notably higher delta O-18 (6.2-7.5%; Fo = 70-88 mol%); and one of the dike samples gives intermediate compositions (5.2-6.1%, Fo = 83-87 mol%) between the other dikes and the CFBs. The oxygen isotopic compositions do not correlate with radiogenic isotope compositions susceptible to crustal assimilation (Sr, Nd, and Pb) or with geochemical indicators of pyroxene-rich mantle sources. Instead, delta O-18 correlates positively with enrichments in large-ion lithophile elements (especially K) and Os-187. We suggest that the oxygen isotopic compositions of the Vestfjella CFB olivines primarily record large-scale subduction-related metasomatism of the sub-Gondwanan mantle (base of the lithosphere or deeper) prior to Karoo magmatism. The overall influence of such sources to Karoo magmatism is not known, but, in addition to continental lithosphere, they may be responsible for some of the geochemical heterogeneity observed in the CFBs.
  • Heinonen, Jussi S.; Luttinen, Arto V.; Whitehouse, M.J. (2018)
    Karoo continental flood basalt (CFB) province is known for its highly variable trace element and isotopic composition, often attributed to the involvement of continental lithospheric sources. Here, we report oxygen isotopic compositions measured with secondary ion mass spectrometry for hand-picked olivine phenocrysts from similar to 190 to 180 Ma CFBs and intrusive rocks from Vestfjella, western Dronning Maud Land, that form an Antarctic extension of the Karoo province. The Vestfjella lavas exhibit heterogeneous trace element and radiogenic isotope compositions (e.g., epsilon(Nd) from -16 to +2 at 180 Ma) and the involvement of continental lithospheric mantle and/or crust in their petrogenesis has previously been suggested. Importantly, our sample set also includes rare primitive dikes that have been derived from depleted asthenospheric mantle sources (epsilon(Nd) up to + 8 at 180 Ma). The majority of the oxygen isotopic compositions of the olivines from these dike rocks (delta O-18 = 4.4-5.2%; Fo = 78-92 mol%) are also compatible with such sources. The olivine phenocrysts in the lavas, however, are characterized by notably higher delta O-18 (6.2-7.5%; Fo = 70-88 mol%); and one of the dike samples gives intermediate compositions (5.2-6.1%, Fo = 83-87 mol%) between the other dikes and the CFBs. The oxygen isotopic compositions do not correlate with radiogenic isotope compositions susceptible to crustal assimilation (Sr, Nd, and Pb) or with geochemical indicators of pyroxene-rich mantle sources. Instead, delta O-18 correlates positively with enrichments in large-ion lithophile elements (especially K) and Os-187. We suggest that the oxygen isotopic compositions of the Vestfjella CFB olivines primarily record large-scale subduction-related metasomatism of the sub-Gondwanan mantle (base of the lithosphere or deeper) prior to Karoo magmatism. The overall influence of such sources to Karoo magmatism is not known, but, in addition to continental lithosphere, they may be responsible for some of the geochemical heterogeneity observed in the CFBs.
  • Turunen, Sanni T.; Luttinen, Arto V.; Heinonen, Jussi S.; Jamal, Daúd L. (2019)
    We present geochemical and isotopic (Nd, Sr) data for a picrite lava suite from the Luenha River and adjacent areas in Mozambique. The Luenha picrites represent a previously unknown type of picrites related to the Karoo large igneous province (LIP) and are distinguished by their notably low TiO2 contents (0.3-1.0 wt%) and coupling of high Nb/Y with low Zr/Y and Sm/Yb. Relatively high CaO and low Zn/Fe point to a peridotitic mantle source. Contamination-sensitive incompatible element ratios show that one lava flow is likely to be uncontaminated by the crust and its composition suggests a mantle source with primitive mantle-like incompatible element ratios and mildly depleted isotopic ratios (initial Sr-87/Sr-86 = 0.7041 and epsilon(Nd) = +1.4 at 180 Ma). The primary melts of the Luenha picrites had MgO contents in the range of 13-21 wt%. Our preferred estimate for a primary melt composition (MgO = 18 wt%) resembles experimental melts of fertile mantle peridotite at 3-4 GPa and indicates liquidus temperature of 1445-1582 degrees C. Geochemical similarities suggest the Luenha picrites were generated from the same overall primitive mantle-like reservoir that produced the main volume of Karoo flood basalts in the Karoo, Kalahari, and Zambezi basins, whereas the previously identified enriched and depleted (upper) mantle sources of Karoo picrite suites (Mwenezi, Antarctica) were subordinate sources for flood basalts. We propose that the Luenha picrites record melting of a hot, chemically primitive mantle plume source that may have been rooted in the sub-African large low shear velocity province boundary and that such a source might have been the most significant magma source in the Karoo LIP. (C) 2019 The Author(s). Published by Elsevier B.V.