Sort by: Order: Results:

Now showing items 1-20 of 26
  • Hotta, Jaakko; Saari, Jukka; Koskinen, Miika; Hlushchuk, Yevhen; Forss, Nina; Hari, Riitta (2017)
    Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31-58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q <.05, false discovery rate-corrected) included the hand representation area in the sensorimotor cortex, inferior frontal gyrus, secondary somatosensory cortex, inferior parietal lobule, orbitofrontal cortex, and thalamus. Our findings indicate that CRPS impairs action observation by affecting brain areas related to pain processing and motor control. Perspective: This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. (C) 2016 by the American Pain Society
  • Haaranen, Mia; Scuppa, Giulia; Tambalo, Stefano; Järvi, Vilja; Bertozzi, Sine M.; Armirotti, Andrea; Sommer, Wolfgang H.; Bifone, Angelo; Hyytiä, Petri (2020)
    The anterior insular cortex plays a key role in the representation of interoceptive effects of drug and natural rewards and their integration with attention, executive function, and emotions, making it a potential target region for intervention to control appetitive behaviors. Here, we investigated the effects of chemogenetic stimulation or inhibition of the anterior insula on alcohol and sucrose consumption. Excitatory or inhibitory designer receptors (DREADDs) were expressed in the anterior insula of alcohol-preferring rats by means of adenovirus-mediated gene transfer. Rats had access to either alcohol or sucrose solution during intermittent sessions. To characterize the brain network recruited by chemogenetic insula stimulation we measured brain-wide activation patterns using pharmacological magnetic resonance imaging (phMRI) and c-Fos immunohistochemistry. Anterior insula stimulation by the excitatory Gq-DREADDs significantly attenuated both alcohol and sucrose consumption, whereas the inhibitory Gi-DREADDs had no effects. In contrast, anterior insula stimulation failed to alter locomotor activity or deprivation-induced water drinking. phMRI and c-Fos immunohistochemistry revealed downstream activation of the posterior insula and medial prefrontal cortex, as well as of the mediodorsal thalamus and amygdala. Our results show the critical role of the anterior insula in regulating reward-directed behavior and delineate an insula-centered functional network associated with the effects of insula stimulation. From a translational perspective, our data demonstrate the therapeutic potential of circuit-based interventions and suggest that potentiation of insula excitability with neuromodulatory methods, such as repetitive transcranial magnetic stimulation (rTMS), could be useful in the treatment of alcohol use disorders.
  • Mutanen, Tuomas P.; Metsomaa, Johanna; Liljander, Sara; Ilmoniemi, Risto J. (2018)
    Electroencephalography (EEG) and magnetoencephalography (MEG) often suffer from noise-and artifact-contaminated channels and trials. Conventionally, EEG and MEG data are inspected visually and cleaned accordingly, e.g., by identifying and rejecting the so-called "bad" channels. This approach has several shortcomings: data inspection is laborious, the rejection criteria are subjective, and the process does not fully utilize all the information in the collected data. Here, we present noise-cleaning methods based on modeling the multi-sensor and multi-trial data. These approaches offer objective, automatic, and robust removal of noise and disturbances by taking into account the sensor-or trial-specific signal-to-noise ratios. We introduce a method called the source-estimate-utilizing noise-discarding algorithm (the SOUND algorithm). SOUND employs anatomical information of the head to cross-validate the data between the sensors. As a result, we are able to identify and suppress noise and artifacts in EEG and MEG. Furthermore, we discuss the theoretical background of SOUND and show that it is a special case of the well-known Wiener estimators. We explain how a completely data-driven Wiener estimator (DDWiener) can be used when no anatomical information is available. DDWiener is easily applicable to any linear multivariate problem; as a demonstrative example, we show how DDWiener can be utilized when estimating event-related EEG/MEG responses. We validated the performance of SOUND with simulations and by applying SOUND to multiple EEG and MEG datasets. SOUND considerably improved the data quality, exceeding the performance of the widely used channel-rejection and interpolation scheme. SOUND also helped in localizing the underlying neural activity by preventing noise from contaminating the source estimates. SOUND can be used to detect and reject noise in functional brain data, enabling improved identification of active brain areas.
  • Heikkinen, Paula H.; Pulvermüller, Friedemann; Mäkelä, Jyrki P.; Ilmoniemi, Risto J.; Lioumis, Pantelis; Kujala, Teija; Manninen, Riitta-Leena; Ahvenainen, Antti; Klippi, Anu (2019)
    Neuromodulation technologies, such as transcranial magnetic stimulation (TMS), are promising tools for neurorehabilitation, aphasia therapy included, but not yet in common clinical use. Combined with behavioral techniques, in particular treatment-efficient Intensive Language-Action Therapy (ILAT, previously CIAT or CILT), TMS could substantially amplify the beneficial effect of such behavioral therapy alone (Thiel et al., 2013; Martin et al., 2014; Mendoza et al., 2016; Kapoor, 2017). In this randomized study of 17 subjects with post-stroke aphasia in the chronic stage, we studied the combined effect of ILAT and 1-Hz placebo-controlled navigated repetitive TMS (rTMS) to the right-hemispheric inferior frontal cortex-that is, to the anterior part of the non-dominant hemisphere's homolog Broca's area (pars triangularis). Patients were randomized to groups A and B. Patients in group A received a 2-week period of rTMS during naming training where they named pictures displayed on the screen once every 10 s, followed by 2 weeks of rTMS and naming combined with ILAT. Patients in group B received the same behavioral therapy but TMS was replaced by sham stimulation. The primary outcome measures for changes in language performance were the Western Aphasia Battery's aphasia quotient AQ; the secondary outcome measures were the Boston naming test (BNT) and the Action naming test (Action BNT, ANT). All subjects completed the study. At baseline, no statistically significant group differences were discovered for age, post-stroke time or diagnosis. ILAT was associated with significant improvement across groups, as documented by both primary and secondary outcome measures. No significant effect of rTMS could be documented. Our results agree with previous results proving ILAT's ability to improve language in patients with chronic aphasia. In contrast with earlier claims, however, a beneficial effect of rTMS in chronic post-stroke aphasia rehabilitation was not detected in this study.
  • Makela, Jyrki P.; Lioumis, Pantelis; Laaksonen, Kristina; Forss, Nina; Tatlisumak, Turgut; Kaste, Markku; Mustanoja, Satu (2015)
    Objective. Stroke alters cortical excitability both in the lesioned and in the nonlesioned hemisphere. Stroke recovery has been studied using transcranial magnetic stimulation (TMS). Spontaneous brain oscillations and somatosensory evoked fields (SEFs) measured by magnetoencephalography (MEG) are modified in stroke patients during recovery. Methods. We recorded SEFs and spontaneous MEG activity and motor threshold (MT) short intracortical inhibition (SICI) and intracortical facilitation (ICF) with navigated TMS (nTMS) at one and three months after first-ever hemispheric ischemic strokes. Changes of MEG and nTMS parameters attributed to gamma-aminobutyrate and glutamate transmission were compared. Results. ICF correlated with the strength and extent of SEF source areas depicted by MEG at three months. The nTMS MT and event-related desynchronization (ERD) of beta-band MEG activity and SICI and the beta-band MEG event-related synchronization (ERS) were correlated, but less strongly. Conclusions. This first report using sequential nTMS and MEG in stroke recovery found intra-and interhemispheric correlations of nTMS and MEG estimates of cortical excitability. ICF and SEF parameters, MT and the ERD of the lesioned hemisphere, and SICI and ERS of the nonlesioned hemisphere were correlated. Covarying excitability in the lesioned and nonlesioned hemispheres emphasizes the importance of the hemispheric balance of the excitability of the sensorimotor system.
  • Martikainen, Ilkka K.; Hagelberg, Nora; Jääskelainen, Satu K.; Hietala, Jarmo; Pertovaara, Antti (2018)
    Here we review the literature assessing the roles of the brain dopaminergic and serotonergic systems in the modulation of pain as revealed by in vivo human studies using positron emission tomography. In healthy subjects, dopamine D-2/D-3 receptor availability particularly in the striatum and serotonin 5-HT1A and 5-HT2A receptor availabilities in the cortex predict the subject's response to tonic experimental pain. High availability of dopamine D-2/D-3 or serotonin 5-HT2A receptors is associated with high pain intensity, whereas high availability of 5-HT1A receptors associates with low pain intensity. Chronic neuropathic pain is associated with high striatal dopamine D-2/D-3 receptor availability, for which low endogenous dopamine tone is a plausible explanation, although a compensatory increase in striatal dopamine D-2/D-3 receptor density may also contribute. In contrast, chronic musculoskeletal pain is associated with low baseline availability of striatal dopamine D-2/D-3 receptors. In healthy subjects, brain serotonin 5-HT1A as well as dopamine D-2/D-3 receptor availabilities associate with the subject's response criterion rather than the capacity to discriminate painful thermal stimuli suggesting that these neurotransmitter systems act mainly on non-sensory rather than sensory factors of thermally induced pain experience. Additionally, 5-HT1A receptor availability predicts the subject's discriminative ability but not response criterion for non-painful tactile test stimuli, while no such correlation is observed with dopamine D-2/D-3 receptors. These findings suggest that dopamine acting on striatal dopamine D-2/D-3 receptors and serotonin acting on cortical 5-HT1A and 5-HT2A receptors contribute to top-down pain regulation in humans.
  • Hernandez-Pavon, Julio C.; Makela, Niko; Lehtinen, Henri; Lioumis, Pantelis; Makela, Jyrki P. (2014)
  • Rantamäki, Tomi; Kohtala, Samuel (2020)
    Recent studies have strived to find an association between rapid antidepressant effects and a specific subset of pharmacological targets and molecular pathways. Here, we propose a broader hypothesis of encoding, consolidation, and renormalization in depression (ENCORE-D), which suggests that, fundamentally, rapid and sustained antidepressant effects rely on intrinsic homeostatic mechanisms evoked as a response to the acute pharmacological or physiologic effects triggered by the treatment. We review evidence that supports the notion that various treatments with a rapid onset of action, such as ketamine, electroconvulsive therapy, and sleep deprivation, share the ability to acutely excite cortical networks, which increases synaptic potentiation, alters patterns of functional connectivity, and ameliorates depressive symptoms. We proceed to examine how the initial effects are short-lived and, as such, require both consolidation during wake and maintenance throughout sleep to remain sustained. Here, we incorporate elements from the synaptic homeostasis hypothesis and theorize that the fundamental mechanisms of synaptic plasticity and sleep, particularly the homeostatic emergence of slow-wave electroencephalogram activity and the renormalization of synaptic strength, are at the center of sustained antidepressant effects. We conclude by discussing the various implications of the ENCORE-D hypothesis and offer several considerations for future experimental and clinical research. Significance Statement-Proposed molecular perspectives of rapid antidepressant effects fail to appreciate the temporal distribution of the effects of ketamine on cortical excitation and plasticity as well as the prolonged influence on depressive symptoms. The encoding, consolidation, and renormalization in depression hypothesis proposes that the lasting clinical effects can be best explained by adaptive functional and structural alterations in neural circuitries set in motion in response to the acute pharmacological effects of ketamine (i.e., changes evoked during the engagement of receptor targets such as N-methyl-D-aspartate receptors) or other putative rapid-acting antidepressants. The present hypothesis opens a completely new avenue for conceptualizing and targeting brain mechanisms that are important for antidepressant effects wherein sleep and synaptic homeostasis are at the center stage.
  • Guntinas-Lichius, Orlando; Volk, Gerd Fabian; Olsen, Kerry D.; Mäkitie, Antti A.; Silver, Carl E.; Zafereo, Mark E.; Rinaldo, Alessandra; Randolph, Gregory W.; Simo, Ricard; Shaha, Ashok R.; Vander Poorten, Vincent; Ferlito, Alfio (2020)
    Purpose Facial nerve electrodiagnostics is a well-established and important tool for decision making in patients with facial nerve diseases. Nevertheless, many otorhinolaryngologist-head and neck surgeons do not routinely use facial nerve electrodiagnostics. This may be due to a current lack of agreement on methodology, interpretation, validity, and clinical application. Electrophysiological analyses of the facial nerve and the mimic muscles can assist in diagnosis, assess the lesion severity, and aid in decision making. With acute facial palsy, it is a valuable tool for predicting recovery. Methods This paper presents a guideline prepared by members of the International Head and Neck Scientific Group and of the Multidisciplinary Salivary Gland Society for use in cases of peripheral facial nerve disorders based on a systematic literature search. Results Required equipment, practical implementation, and interpretation of the results of facial nerve electrodiagnostics are presented. Conclusion The aim of this guideline is to inform all involved parties (i.e. otorhinolaryngologist-head and neck surgeons and other medical specialists, therapeutic professionals and the affected persons) and to provide practical recommendations for the diagnostic use of facial nerve electrodiagnostics.
  • De Geeter, N.; Lioumis, P.; Laakso, A.; Crevecoeur, G.; Dupre, L. (2016)
    When delivered over a specific cortical site, TMS can temporarily disrupt the ongoing process in that area. This allows mapping of speech-related areas for preoperative evaluation purposes. We numerically explore the observed variability of TMS responses during a speech mapping experiment performed with a neuronavigation system. We selected four cases with very small perturbations in coil position and orientation. In one case (E) a naming error occurred, while in the other cases (NEA, B, C) the subject appointed the images as smoothly as without TMS. A realistic anisotropic head model was constructed of the subject from T1-weighted and diffusion-weighted MRI. The induced electric field distributions were computed, associated to the coil parameters retrieved from the neuronavigation system. Finally, the membrane potentials along relevant white matter fibre tracts, extracted from DTI-based tractography, were computed using a compartmental cable equation. While only minor differences could be noticed between the induced electric field distributions of the four cases, computing the corresponding membrane potentials revealed different subsets of tracts were activated. A single tract was activated for all coil positions. Another tract was only triggered for case E. NEA induced action potentials in 13 tracts, while NEB stimulated 11 tracts and NEC one. The calculated results are certainly sensitive to the coil specifications, demonstrating the observed variability in this study. However, even though a tract connecting Broca's with Wernicke's area is only triggered for the error case, further research is needed on other study cases and on refining the neural model with synapses and network connections. Case-and subject-specific modelling that includes both electromagnetic fields and neuronal activity enables demonstration of the variability in TMS experiments and can capture the interaction with complex neural networks.
  • Bona, Silvia; Cattaneo, Zaira; Silvanto, Juha (2016)
    Background: The right occipital face area (rOFA) is known to be involved in face discrimination based on local featural information. Whether this region is also involved in global, holistic stimulus processing is not known. Objective: We used fMRI-guided transcranial magnetic stimulation (TMS) to investigate whether rOFA is causally implicated in stimulus detection based on holistic processing, by the use of Mooney stimuli. Methods: Two studies were carried out: In Experiment 1, participants performed a detection task involving Mooney faces and Mooney objects; Mooney stimuli lack distinguishable local features and can be detected solely via holistic processing (i.e. at a global level) with top-down guidance from previously stored representations. Experiment 2 required participants to detect shapes which are recognized via bottom-up integration of local (collinear) Gabor elements and was performed to control for specificity of rOFA's implication in holistic detection. Results: In Experiment 1, TMS over rOFA and rLO impaired detection of all stimulus categories, with no category-specific effect. In Experiment 2, shape detection was impaired when TMS was applied over rLO but not over rOFA. Conclusions: Our results demonstrate that rOFA is causally implicated in the type of top-down holistic detection required by Mooney stimuli and that such role is not face-selective. In contrast, rOFA does not appear to play a causal role in detection of shapes based on bottom-up integration of local components, demonstrating that its involvement in processing non-face stimuli is specific for holistic processing. (C) 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (
  • Rossini, P. M.; Di Iorio, R.; Bentivoglio, M.; Bertini, G.; Ferreri, F.; Gerloff, C.; Ilmoniemi, R. J.; Miraglia, F.; Nitsche, M. A.; Pestilli, F.; Rosanova, M.; Shirota, Y.; Tesoriero, C.; Ugawa, Y.; Vecchio, F.; Ziemann, U.; Hallett, M. (2019)
    The goal of this paper is to examine existing methods to study the "Human Brain Connectome" with a specific focus on the neurophysiological ones. In recent years, a new approach has been developed to evaluate the anatomical and functional organization of the human brain: the aim of this promising multimodality effort is to identify and classify neuronal networks with a number of neurobiologically meaningful and easily computable measures to create its connectome. By defining anatomical and functional connections of brain regions on the same map through an integrated approach, comprising both modern neurophysiological and neuroimaging (i.e. flow/metabolic) brain-mapping techniques, network analysis becomes a powerful tool for exploring structural-functional connectivity mechanisms and for revealing etiological relationships that link connectivity abnormalities to neuropsychiatric disorders. Following a recent IFCN-endorsed meeting, a panel of international experts was selected to produce this current state-of-art document, which covers the available knowledge on anatomical and functional connectivity, including the most commonly used structural and functional MRI, EEG, MEG and non-invasive brain stimulation techniques and measures of local and global brain connectivity. (C) 2019 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.
  • Parkkonen, Eeva; Laaksonen, Kristina; Piitulainen, Harri; Parkkonen, Lauri; Forss, Nina (2015)
    Background: Integration of afferent somatosensory input with motor-cortex output is essential for accurate movements. Prior studies have shown that tactile input modulates motor-cortex excitability, which is reflected in the reactivity of the similar to 20-Hz motor-cortex rhythm. similar to 20-Hz rebound is connected to inhibition or deactivation of motor cortex whereas suppression has been associated with increased motor cortex activity. Although tactile sense carries important information for controlling voluntary actions, proprioception likely provides the most essential feedback for motor control. Methods: To clarify how passive movement modulates motor-cortex excitability, we studied with magnetoencephalography (MEG) the amplitudes and peak latencies of suppression and rebound of the similar to 20-Hz rhythm elicited by tactile stimulation and passive movement of right and left index fingers in 22 healthy volunteers. Results: Passive movement elicited a stronger and more robust similar to 20-Hz rebound than tactile stimulation. In contrast, the suppression amplitudes did not differ between the two stimulus types. Conclusion: Our findings suggest that suppression and rebound represent activity of two functionally distinct neuronal populations. The similar to 20-Hz rebound to passive movement could be a suitable tool to study the functional state of the motor cortex both in healthy subjects and in patients with motor disorders.
  • Fekonja, Lucius S.; Wang, Ziqian; Cacciola, Alberto; Roine, Timo; Aydogan, D. Baran; Mewes, Darius; Vellmer, Sebastian; Vajkoczy, Peter; Picht, Thomas (2022)
    Tumors and their location distinctly alter both local and global brain connectivity within the ipsilesional hemisphere of glioma patients. Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to assess local network differences and graph theoretical analyses enable investigation of global and local network properties. Here, we used network measures to characterize glioma-related decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment. We found that lesion location resulted in differential impairment of both short and long connectivity patterns. Network analysis showed reduced global and local efficiency in the ipsilesional hemisphere compared to the contralesional hemispheric networks, which reflect the impairment of information transfer across different regions of a network.
  • Gogulski, Juha; Zetter, Rasmus; Nyrhinen, Mikko; Pertovaara, Antti; Carlson, Synnove (2017)
    The human prefrontal cortex (PFC) has been shown to be important for metacognition, the capacity to monitor and control one's own cognitive processes. Here we dissected the neural architecture of somatosensory metacognition using navigated single-pulse transcranial magnetic stimulation (TMS) to modulate tactile working memory (WM) processing. We asked subjects to perform tactile WM tasks and to give a confidence rating for their performance after each trial. We circumvented the challenge of interindividual variability in functional brain anatomy by applying TMS to two PFC areas that, according to tractography, were neurally connected with the primary somatosensory cortex (S1): one area in the superior frontal gyrus (SFG), another in the middle frontal gyrus (MFG). These two PFC locations and a control cortical area were stimulated during both spatial and temporal tactile WM tasks. We found that tractography-guided TMS of the SFG area selectively enhanced metacognitive accuracy of tactile temporal, but not spatial WM. Stimulation of the MFG area that was also neurally connected with the S1 had no such effect on metacognitive accuracy of either the temporal or spatial tactile WM. Our findings provide causal evidence that the PFC contains distinct neuroanatomical substrates for introspective accuracy of tactile WM.
  • Saad, Elyana; Wojciechowska, Maria; Silvanto, Juha (2015)
    Visual short-term memory (VSTM) and visual imagery are believed to involve overlapping neuronal representations in the early visual cortex. While a number of studies have provided evidence for this overlap, at the behavioral level VSTM and imagery are dissociable processes; this begs the question of how their neuronal mechanisms differ. Here we used transcranial magnetic stimulation (TMS) to examine whether the neural bases of imagery and VSTM maintenance are dissociable in the early visual cortex (EVC). We intentionally used a similar task for VSTM and imagery in order to equate their assessment. We hypothesized that any differential effect of TMS on VSTM and imagery would indicate that their neuronal bases differ at the level of EVC. In the "alone" condition, participants were asked to engage either in VSTM or imagery, whereas in the "concurrent" condition, each trial required both VSTM maintenance and imagery simultaneously. A dissociation between VSTM and imagery was observed for reaction times: TMS slowed down responses for VSTM but not for imagery. The impact of TMS on sensitivity did not differ between VSTM and imagery, but did depend on whether the tasks were carried concurrently or alone. This study shows that neural processes associated with VSTM and imagery in the early visual cortex can be partially dissociated. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (
  • Komeilipoor, Naeem; Ilmoniemi, Risto J.; Tiippana, Kaisa; Vainio, Martti; Tiainen, Mikko; Vainio, Lari (2017)
    Contraction of a muscle modulates not only the corticospinal excitability (CSE) of the contracting muscle but also that of different muscles. We investigated to what extent the CSE of a hand muscle is modulated during preparation and execution of teeth clenching and ipsilateral foot dorsiflexion either separately or in combination. Hand-muscle CSE was estimated based on motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and recorded from the first dorsal interosseous (FDI) muscle. We found higher excitability during both preparation and execution of all the motor tasks than during mere observation of a fixation cross. As expected, the excitability was greater during the execution phase than the preparation one. Furthermore, both execution and preparation of combined motor tasks led to higher excitability than individual tasks. These results extend our current understanding of the neural interactions underlying simultaneous contraction of muscles in different body parts.
  • Krieg, Sandro M.; Lioumis, Pantelis; Mäkelä, Jyrki P.; Wilenius, Juha; Karhu, Jari; Hannula, Henri; Savolainen, Petri; Weiss, Carolin Lucas; Seidel, Kathleen; Laakso, Aki; Islam, Mominul; Vaalto, Selja; Lehtinen, Henri; Vitikainen, Anne-Mari; Tarapore, Phiroz E.; Picht, Thomas (2017)
    Navigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value. The nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications. nTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here. At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.
  • Mutanen, Tuomas P.; Kukkonen, Matleena; Nieminen, Jaakko O.; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J. (2016)
    Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) often suffers from large muscle artifacts. Muscle artifacts can be removed using signal-space projection (SSP), but this canmake the visual interpretation of the remaining EEG data difficult. We suggest to use an additional step after SSP that we call source-informed reconstruction (SIR). SSP-SIR improves substantially the signal quality of artifactual TMS-EEG data, causing minimal distortion in the neuronal signal components. In the SSP-SIR approach, we first project out the muscle artifact using SSP. Utilizing an anatomical model and the remaining signal, we estimate an equivalent source distribution in the brain. Finally, we map the obtained source estimate onto the original signal space, again using anatomical information. This approach restores the neuronal signals in the sensor space and interpolates EEG traces onto the completely rejected channels. The introduced algorithm efficiently suppresses TMS-related muscle artifacts in EEG while retaining well the neuronal EEG topographies and signals. With the presented method, we can remove muscle artifacts from TMS-EEG data and recover the underlying brain responses without compromising the readability of the signals of interest. (C) 2016 Elsevier Inc. All rights reserved.